-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.html
826 lines (729 loc) · 41.4 KB
/
README.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
<!-- ***** BEGIN LICENSE BLOCK *****
- Version: MPL 1.1/GPL 2.0/LGPL 2.1
-
- The contents of this file are subject to the Mozilla Public License Version
- 1.1 (the "License"); you may not use this file except in compliance with
- the License. You may obtain a copy of the License at
- http://www.mozilla.org/MPL/
-
- Software distributed under the License is distributed on an "AS IS" basis,
- WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- for the specific language governing rights and limitations under the
- License.
-
- The Original Code is Mozilla Communicator client code, released
- March 31, 1998.
-
- The Initial Developer of the Original Code is
- Netscape Communications Corporation.
- Portions created by the Initial Developer are Copyright (C) 1998-1999
- the Initial Developer. All Rights Reserved.
-
- Contributor(s):
-
- Alternatively, the contents of this file may be used under the terms of
- either of the GNU General Public License Version 2 or later (the "GPL"),
- or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- in which case the provisions of the GPL or the LGPL are applicable instead
- of those above. If you wish to allow use of your version of this file only
- under the terms of either the GPL or the LGPL, and not to allow others to
- use your version of this file under the terms of the MPL, indicate your
- decision by deleting the provisions above and replace them with the notice
- and other provisions required by the GPL or the LGPL. If you do not delete
- the provisions above, a recipient may use your version of this file under
- the terms of any one of the MPL, the GPL or the LGPL.
-
- ***** END LICENSE BLOCK ***** -->
<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="GENERATOR" content="Mozilla/4.5 [en] (WinNT; I) [Netscape]">
<title>JavaScript Reference Implementation (JSRef) README</title>
</head>
<body>
<h2>
Table of Contents</h2>
<ul>
<li>
<a href="#Introduction">Introduction</a></li>
<li>
<a href="#Build">Build conventions (standalone JS engine and shell)</a></li>
<li>
<a href="#Debugging">Debugging notes</a></li>
<li>
<a href="#Conventions">Naming and coding conventions</a></li>
<li>
<a href="#JSAPI">Using the JS API</a></li>
<li>
<a href="#Design">Design walk-through</a></li>
<li>
<a href="#Resources">Additional Resources (links, API docs, and newsgroups)</a></li>
</ul>
<h2>
<a NAME="Introduction"></a>Introduction</h2>
This is the README file for the <span CLASS=LXRSHORTDESC>JavaScript
Reference (JSRef, now better known as SpiderMonkey) implementation.</span>
It consists of build conventions
and instructions, source code conventions, a design walk-through, and a
brief file-by-file description of the source.
<p><span CLASS=LXRLONGDESC>JSRef builds a library or DLL containing the
JavaScript runtime (compiler, interpreter, decompiler, garbage collector,
atom manager, standard classes). It then compiles a small "shell" program
and links that with the library to make an interpreter that can be used
interactively and with test .js files to run scripts. The code has
no dependencies on the rest of the Mozilla codebase.</span>
<p><i>Quick start tip</i>: skip to "Using the JS API" below, build the
js shell, and play with the object named "it" (start by setting 'it.noisy
= true').
<h2>
<a NAME="Build"></a>Build conventions (standalone JS engine and shell)
(OUT OF DATE!)</h2>
These build directions refer only to building the standalone JavaScript
engine and shell. To build within the browser, refer to the <a
href="http://www.mozilla.org/build/">build
directions</a> on the mozilla.org website.
<p>By default, all platforms build a version of the JS engine that is <i>not</i>
threadsafe. If you require thread-safety, you must also populate
the <tt>mozilla/dist</tt> directory with <a href="http://www.mozilla.org/projects/nspr/reference/html/"
>NSPR</a>
headers and libraries. (NSPR implements a portable threading library,
among other things. The source is downloadable via <a href="http://www.mozilla.org/cvs.html">CVS</a>
from <tt><a href="http://lxr.mozilla.org/mozilla/source/nsprpub">mozilla/nsprpub</a></tt>.)
Next, you must define <tt>JS_THREADSAFE</tt> when building the JS engine,
either on the command-line (gmake/nmake) or in a universal header file.
<h3>
Windows</h3>
<ul>
<li>
Use MSVC 4.2 or 5.0.</li>
<li>
For building from the IDE use <tt>js/src/js.mdp</tt>. (<tt>js.mdp</tt>
is an MSVC4.2 project file, but if you load it into MSVC5, it will be converted
to the newer project file format.) <font color="#CC0000">NOTE: makefile.win
is an nmake file used only for building the JS-engine in the Mozilla browser.
Don't attempt to use it to build the standalone JS-engine.</font></li>
<li>
If you prefer to build from the command-line, use '<tt>nmake -f js.mak</tt>'</li>
<li>
Executable shell <tt>js.exe</tt> and runtime library <tt>js32.dll</tt>
are created in either <tt>js/src/Debug</tt> or <tt>js/src/Release</tt>.</li>
</ul>
<h3>
Macintosh</h3>
<ul>
<li>
Use CodeWarrior 3.x</li>
<li>
Load the project file <tt>js:src:macbuild:JSRef.mcp </tt>and select "Make"
from the menu.</li>
</ul>
<h3>
Unix</h3>
<ul>
<li>
Use '<tt>gmake -f Makefile.ref</tt>' to build. To compile optimized code,
pass <tt>BUILD_OPT=1</tt> on the gmake command line or preset it in the
environment or <tt>Makefile.ref</tt>. <font color="#CC0000">NOTE:
Do not attempt to use Makefile to build the standalone JavaScript engine.
This file is used only for building the JS-engine in the Mozilla browser.</font></li>
<li>
<font color="#000000">Each platform on which JS is built must have a <tt>*.mk</tt>
configuration file in the <tt>js/src/config</tt> directory. The configuration
file specifies the compiler/linker to be used and allows for customization
of command-line options. To date, the build system has been tested
on Solaris, AIX, HP/UX, OSF, IRIX, x86 Linux and Windows NT.</font></li>
<li>
<font color="#000000">Most platforms will work with either the vendor compiler
</font>or
<a href="ftp://prep.ai.mit.edu/pub/gnu">gcc</a>.
(Except that HP builds only work using the native compiler. gcc won't
link correctly with shared libraries on that platform. If someone
knows a way to fix this, <a href="mailto:[email protected]">let us
know</a>.)</li>
<li>
<font color="#000000">If you define <tt>JS_LIVECONNECT</tt>, gmake will
descend into the liveconnect directory and build
<a href="http://lxr.mozilla.org/mozilla/source/js/src/liveconnect/README.html">LiveConnect</a>
after building the JS engine.</font></li>
<li>
To build a binary drop (a zip'ed up file of headers, libraries, binaries),
check out <tt>mozilla/config</tt> and <tt>mozilla/nsprpub/config</tt>.
Use '<tt>gmake -f Makefile.ref nsinstall-target all export ship</tt>'</li>
</ul>
<h2>
<a NAME="Debugging"></a>Debugging notes</h2>
<ul>
<li>
To turn on GC instrumentation, define <tt>JS_GCMETER</tt>.</li>
<ul>
<li>
To turn on GC mark-phase debugging, useful to find leaked objects by their
address, and to dump the GC heap, define <tt>GC_MARK_DEBUG</tt>.
See the code in jsgc.c around the declaration and use of
<tt>js_LiveThingToFind</tt>.</li>
<li>
To turn on the arena package's instrumentation, define <tt>JS_ARENAMETER</tt>.</li>
<li>
To turn on the hash table package's metering, define <tt>JS_HASHMETER</tt>.</li>
</ul>
<h2>
<a NAME="Conventions"></a>Naming and coding conventions</h2>
<ul>
<li>
Public function names begin with <tt>JS_</tt> followed by capitalized "intercaps",
e.g. <tt>JS_NewObject</tt>.</li>
<li>
Extern but library-private function names use a <tt>js_</tt> prefix and
mixed case, e.g. <tt>js_SearchScope</tt>.</li>
<li>
Most static function names have unprefixed, mixed-case names: <tt>GetChar</tt>.</li>
<li>
But static native methods of JS objects have lowercase, underscore-separated
or intercaps names, e.g., <tt>str_indexOf</tt>.</li>
<li>
And library-private and static data use underscores, not intercaps (but
library-private data do use a <tt>js_</tt> prefix).</li>
<li>
Scalar type names are lowercase and js-prefixed: <tt>jsdouble</tt>.</li>
<li>
Aggregate type names are JS-prefixed and mixed-case: <tt>JSObject.</tt></li>
<li>
Macros are generally <tt>ALL_CAPS </tt>and underscored, to call out potential
side effects, multiple uses of a formal argument, etc.</li>
<li>
Four spaces of indentation per statement nesting level.</li>
<li>
Tabs are taken to be eight spaces, and an Emacs magic comment at the top
of each file tries to help. If you're using MSVC or similar, you'll want
to set tab width to 8, and help convert these files to be space-filled.
<font color="#CC0000">Do not add hard tabs to source files; do remove them
whenever possible.</font></li>
<li>
DLL entry points have their return type expanded within a <tt>JS_PUBLIC_API()</tt>
macro call, to get the right Windows secret type qualifiers in the right
places for all build variants.</li>
<li>
Callback functions that might be called from a DLL are similarly macroized
with <tt>JS_STATIC_DLL_CALLBACK</tt> (if the function otherwise would be
static to hide its name) or <tt>JS_DLL_CALLBACK</tt> (this macro takes
no type argument; it should be used after the return type and before the
function name).</li>
</ul>
<h2>
<a NAME="JSAPI"></a>Using the JS API</h2>
<h4>
Starting up</h4>
<pre><tt> /*
* Tune this to avoid wasting space for shallow stacks, while saving on
* malloc overhead/fragmentation for deep or highly-variable stacks.
*/
#define STACK_CHUNK_SIZE 8192
JSRuntime *rt;
JSContext *cx;
/* You need a runtime and one or more contexts to do anything with JS. */
rt = JS_NewRuntime(0x400000L);
if (!rt)
fail("can't create JavaScript runtime");
cx = JS_NewContext(rt, STACK_CHUNK_SIZE);
if (!cx)
fail("can't create JavaScript context");
/*
* The context definitely wants a global object, in order to have standard
* classes and functions like Date and parseInt. See below for details on
* JS_NewObject.
*/
JSObject *globalObj;
globalObj = JS_NewObject(cx, &my_global_class, 0, 0);
JS_InitStandardClasses(cx, globalObj);</tt></pre>
<h4>
Defining objects and properties</h4>
<pre><tt> /* Statically initialize a class to make "one-off" objects. */
JSClass my_class = {
"MyClass",
/* All of these can be replaced with the corresponding JS_*Stub
function pointers. */
my_addProperty, my_delProperty, my_getProperty, my_setProperty,
my_enumerate, my_resolve, my_convert, my_finalize
};
JSObject *obj;
/*
* Define an object named in the global scope that can be enumerated by
* for/in loops. The parent object is passed as the second argument, as
* with all other API calls that take an object/name pair. The prototype
* passed in is null, so the default object prototype will be used.
*/
obj = JS_DefineObject(cx, globalObj, "myObject", &my_class, NULL,
JSPROP_ENUMERATE);
/*
* Define a bunch of properties with a JSPropertySpec array statically
* initialized and terminated with a null-name entry. Besides its name,
* each property has a "tiny" identifier (MY_COLOR, e.g.) that can be used
* in switch statements (in a common my_getProperty function, for example).
*/
enum my_tinyid {
MY_COLOR, MY_HEIGHT, MY_WIDTH, MY_FUNNY, MY_ARRAY, MY_RDONLY
};
static JSPropertySpec my_props[] = {
{"color", MY_COLOR, JSPROP_ENUMERATE},
{"height", MY_HEIGHT, JSPROP_ENUMERATE},
{"width", MY_WIDTH, JSPROP_ENUMERATE},
{"funny", MY_FUNNY, JSPROP_ENUMERATE},
{"array", MY_ARRAY, JSPROP_ENUMERATE},
{"rdonly", MY_RDONLY, JSPROP_READONLY},
{0}
};
JS_DefineProperties(cx, obj, my_props);
/*
* Given the above definitions and call to JS_DefineProperties, obj will
* need this sort of "getter" method in its class (my_class, above). See
* the example for the "It" class in js.c.
*/
static JSBool
my_getProperty(JSContext *cx, JSObject *obj, jsval id, jsval *vp)
{
if (JSVAL_IS_INT(id)) {
switch (JSVAL_TO_INT(id)) {
case MY_COLOR: *vp = . . .; break;
case MY_HEIGHT: *vp = . . .; break;
case MY_WIDTH: *vp = . . .; break;
case MY_FUNNY: *vp = . . .; break;
case MY_ARRAY: *vp = . . .; break;
case MY_RDONLY: *vp = . . .; break;
}
}
return JS_TRUE;
}</tt></pre>
<h4>
Defining functions</h4>
<pre><tt> /* Define a bunch of native functions first: */
static JSBool
my_abs(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval)
{
jsdouble x, z;
if (!JS_ValueToNumber(cx, argv[0], &x))
return JS_FALSE;
z = (x < 0) ? -x : x;
return JS_NewDoubleValue(cx, z, rval);
}
. . .
/*
* Use a JSFunctionSpec array terminated with a null name to define a
* bunch of native functions.
*/
static JSFunctionSpec my_functions[] = {
/* name native nargs */
{"abs", my_abs, 1},
{"acos", my_acos, 1},
{"asin", my_asin, 1},
. . .
{0}
};
/*
* Pass a particular object to define methods for it alone. If you pass
* a prototype object, the methods will apply to all instances past and
* future of the prototype's class (see below for classes).
*/
JS_DefineFunctions(cx, globalObj, my_functions);</tt></pre>
<h4>
Defining classes</h4>
<pre><tt> /*
* This pulls together the above API elements by defining a constructor
* function, a prototype object, and properties of the prototype and of
* the constructor, all with one API call.
*
* Initialize a class by defining its constructor function, prototype, and
* per-instance and per-class properties. The latter are called "static"
* below by analogy to Java. They are defined in the constructor object's
* scope, so that 'MyClass.myStaticProp' works along with 'new MyClass()'.
*
* JS_InitClass takes a lot of arguments, but you can pass null for any of
* the last four if there are no such properties or methods.
*
* Note that you do not need to call JS_InitClass to make a new instance of
* that class -- otherwise there would be a chicken-and-egg problem making
* the global object -- but you should call JS_InitClass if you require a
* constructor function for script authors to call via new, and/or a class
* prototype object ('MyClass.prototype') for authors to extend with new
* properties at run-time. In general, if you want to support multiple
* instances that share behavior, use JS_InitClass.
*/
protoObj = JS_InitClass(cx, globalObj, NULL, &my_class,
/* native constructor function and min arg count */
MyClass, 0,
/* prototype object properties and methods -- these
will be "inherited" by all instances through
delegation up the instance's prototype link. */
my_props, my_methods,
/* class constructor properties and methods */
my_static_props, my_static_methods);</tt></pre>
<h4>
Running scripts</h4>
<pre><tt> /* These should indicate source location for diagnostics. */
char *filename;
uintN lineno;
/*
* The return value comes back here -- if it could be a GC thing, you must
* add it to the GC's "root set" with JS_AddRoot(cx, &thing) where thing
* is a JSString *, JSObject *, or jsdouble *, and remove the root before
* rval goes out of scope, or when rval is no longer needed.
*/
jsval rval;
JSBool ok;
/*
* Some example source in a C string. Larger, non-null-terminated buffers
* can be used, if you pass the buffer length to JS_EvaluateScript.
*/
char *source = "x * f(y)";
ok = JS_EvaluateScript(cx, globalObj, source, strlen(source),
filename, lineno, &rval);
if (ok) {
/* Should get a number back from the example source. */
jsdouble d;
ok = JS_ValueToNumber(cx, rval, &d);
. . .
}</tt></pre>
<h4>
Calling functions</h4>
<pre><tt> /* Call a global function named "foo" that takes no arguments. */
ok = JS_CallFunctionName(cx, globalObj, "foo", 0, 0, &rval);
jsval argv[2];
/* Call a function in obj's scope named "method", passing two arguments. */
argv[0] = . . .;
argv[1] = . . .;
ok = JS_CallFunctionName(cx, obj, "method", 2, argv, &rval);</tt></pre>
<h4>
Shutting down</h4>
<pre><tt> /* For each context you've created: */
JS_DestroyContext(cx);
/* For each runtime: */
JS_DestroyRuntime(rt);
/* And finally: */
JS_ShutDown();</tt></pre>
<h4>
Debugging API</h4>
See the<tt> trap, untrap, watch, unwatch, line2pc</tt>, and <tt>pc2line</tt>
commands in <tt>js.c</tt>. Also the (scant) comments in <i>jsdbgapi.h</i>.
<h2>
<a NAME="Design"></a>Design walk-through</h2>
This section must be brief for now -- it could easily turn into a book.
<h4>
JS "JavaScript Proper"</h4>
JS modules declare and implement the JavaScript compiler, interpreter,
decompiler, GC and atom manager, and standard classes.
<p>JavaScript uses untyped bytecode and runtime type tagging of data values.
The <tt>jsval</tt> type is a signed machine word that contains either a
signed integer value (if the low bit is set), or a type-tagged pointer
or boolean value (if the low bit is clear). Tagged pointers all refer to
8-byte-aligned things in the GC heap.
<p>Objects consist of a possibly shared structural description, called
the map or scope; and unshared property values in a vector, called the
slots. Object properties are associated with nonnegative integers stored
in <tt>jsval</tt>'s, or with atoms (unique string descriptors) if named
by an identifier or a non-integral index expression.
<p>Scripts contain bytecode, source annotations, and a pool of string,
number, and identifier literals. Functions are objects that extend scripts
or native functions with formal parameters, a literal syntax, and a distinct
primitive type ("function").
<p>The compiler consists of a recursive-descent parser and a random-logic
rather than table-driven lexical scanner. Semantic and lexical feedback
are used to disambiguate hard cases such as missing semicolons, assignable
expressions ("lvalues" in C parlance), etc. The parser generates bytecode
as it parses, using fixup lists for downward branches and code buffering
and rewriting for exceptional cases such as for loops. It attempts no error
recovery. The interpreter executes the bytecode of top-level scripts, and
calls itself indirectly to interpret function bodies (which are also scripts).
All state associated with an interpreter instance is passed through formal
parameters to the interpreter entry point; most implicit state is collected
in a type named JSContext. Therefore, all API and almost all other functions
in JSRef take a JSContext pointer as their first argument.
<p>The decompiler translates postfix bytecode into infix source by consulting
a separate byte-sized code, called source notes, to disambiguate bytecodes
that result from more than one grammatical production.
<p>The GC is a mark-and-sweep, non-conservative (exact) collector. It
can allocate only fixed-sized things -- the current size is two machine
words. It is used to hold JS object and string descriptors (but not property
lists or string bytes), and double-precision floating point numbers. It
runs automatically only when maxbytes (as passed to <tt>JS_NewRuntime()</tt>)
bytes of GC things have been allocated and another thing-allocation request
is made. JS API users should call <tt>JS_GC()</tt> or <tt>JS_MaybeGC()</tt>
between script executions or from the branch callback, as often as necessary.
<p>An important point about the GC's "exactness": you must add roots for
new objects created by your native methods if you store references to them
into a non-JS structure in the malloc heap or in static data. Also, if
you make a new object in a native method, but do not store it through the
<tt>rval</tt>
result parameter (see math_abs in the "Using the JS API" section above)
so that it is in a known root, the object is guaranteed to survive only
until another new object is created. Either lock the first new object when
making two in a row, or store it in a root you've added, or store it via
rval.
See the <a href="http://www.mozilla.org/js/spidermonkey/gctips.html">GC tips</a>
document for more.
<p>The atom manager consists of a hash table associating strings uniquely
with scanner/parser information such as keyword type, index in script or
function literal pool, etc. Atoms play three roles in JSRef: as literals
referred to by unaligned 16-bit immediate bytecode operands, as unique
string descriptors for efficient property name hashing, and as members
of the root GC set for exact GC.
<p>Native objects and methods for arrays, booleans, dates, functions, numbers,
and strings are implemented using the JS API and certain internal interfaces
used as "fast paths".
<p>In general, errors are signaled by false or unoverloaded-null return
values, and are reported using <tt>JS_ReportError()</tt> or one of its
variants by the lowest level in order to provide the most detail. Client
code can substitute its own error reporting function and suppress errors,
or reflect them into Java or some other runtime system as exceptions, GUI
dialogs, etc..
<h2>
File walk-through (OUT OF DATE!)</h2>
<h4>
jsapi.c, jsapi.h</h4>
The public API to be used by almost all client code. If your client
code can't make do with <tt>jsapi.h</tt>, and must reach into a friend
or private js* file, please let us know so we can extend <tt>jsapi.h</tt>
to include what you need in a fashion that we can support over the long
run.
<h4>
jspubtd.h, jsprvtd.h</h4>
These files exist to group struct and scalar typedefs so they can be used
everywhere without dragging in struct definitions from N different files.
The <tt>jspubtd.h</tt> file contains public typedefs, and is included by
<tt>jsapi.h</tt>.
The <tt>jsprvtd.h</tt> file contains private typedefs and is included by
various .h files that need type names, but not type sizes or declarations.
<h4>
jsdbgapi.c, jsdbgapi.h</h4>
The Debugging API, still very much under development. Provided so far:
<ul>
<li>
Traps, with which breakpoints, single-stepping, step over, step out, and
so on can be implemented. The debugger will have to consult jsopcode.def
on its own to figure out where to plant trap instructions to implement
functions like step out, but a future jsdbgapi.h will provide convenience
interfaces to do these things. At most one trap per bytecode can be set.
When a script (<tt>JSScript</tt>) is destroyed, all traps set in its bytecode
are cleared.</li>
<li>
Watchpoints, for intercepting set operations on properties and running
a debugger-supplied function that receives the old value and a pointer
to the new one, which it can use to modify the new value being set.</li>
<li>
Line number to PC and back mapping functions. The line-to-PC direction
"rounds" toward the next bytecode generated from a line greater than or
equal to the input line, and may return the PC of a for-loop update part,
if given the line number of the loop body's closing brace. Any line after
the last one in a script or function maps to a PC one byte beyond the last
bytecode in the script. An example, from perfect.js:</li>
<pre><tt>14 function perfect(n)
15 {
16 print("The perfect numbers up to " + n + " are:");
17
18 // We build sumOfDivisors[i] to hold a string expression for
19 // the sum of the divisors of i, excluding i itself.
20 var sumOfDivisors = new ExprArray(n+1,1);
21 for (var divisor = 2; divisor <= n; divisor++) {
22 for (var j = divisor + divisor; j <= n; j += divisor) {
23 sumOfDivisors[j] += " + " + divisor;
24 }
25 // At this point everything up to 'divisor' has its sumOfDivisors
26 // expression calculated, so we can determine whether it's perfect
27 // already by evaluating.
28 if (eval(sumOfDivisors[divisor]) == divisor) {
29 print("" + divisor + " = " + sumOfDivisors[divisor]);
30 }
31 }
32 delete sumOfDivisors;
33 print("That's all.");
34 }</tt></pre>
The line number to PC and back mappings can be tested using the js program
with the following script:
<pre><tt> load("perfect.js")
print(perfect)
dis(perfect)
print()
for (var ln = 0; ln <= 40; ln++) {
var pc = line2pc(perfect,ln)
var ln2 = pc2line(perfect,pc)
print("\tline " + ln + " => pc " + pc + " => line " + ln2)
}</tt></pre>
The result of the for loop over lines 0 to 40 inclusive is:
<pre><tt> line 0 => pc 0 => line 16
line 1 => pc 0 => line 16
line 2 => pc 0 => line 16
line 3 => pc 0 => line 16
line 4 => pc 0 => line 16
line 5 => pc 0 => line 16
line 6 => pc 0 => line 16
line 7 => pc 0 => line 16
line 8 => pc 0 => line 16
line 9 => pc 0 => line 16
line 10 => pc 0 => line 16
line 11 => pc 0 => line 16
line 12 => pc 0 => line 16
line 13 => pc 0 => line 16
line 14 => pc 0 => line 16
line 15 => pc 0 => line 16
line 16 => pc 0 => line 16
line 17 => pc 19 => line 20
line 18 => pc 19 => line 20
line 19 => pc 19 => line 20
line 20 => pc 19 => line 20
line 21 => pc 36 => line 21
line 22 => pc 53 => line 22
line 23 => pc 74 => line 23
line 24 => pc 92 => line 22
line 25 => pc 106 => line 28
line 26 => pc 106 => line 28
line 27 => pc 106 => line 28
line 28 => pc 106 => line 28
line 29 => pc 127 => line 29
line 30 => pc 154 => line 21
line 31 => pc 154 => line 21
line 32 => pc 161 => line 32
line 33 => pc 172 => line 33
line 34 => pc 172 => line 33
line 35 => pc 172 => line 33
line 36 => pc 172 => line 33
line 37 => pc 172 => line 33
line 38 => pc 172 => line 33
line 39 => pc 172 => line 33
line 40 => pc 172 => line 33</tt></pre>
</ul>
<h4>
jsconfig.h</h4>
Various configuration macros defined as 0 or 1 depending on how <tt>JS_VERSION</tt>
is defined (as 10 for JavaScript 1.0, 11 for JavaScript 1.1, etc.). Not
all macros are tested around related code yet. In particular, JS 1.0 support
is missing from JSRef. JS 1.2 support will appear in a future JSRef release.
<br>
<h4>
js.c</h4>
The "JS shell", a simple interpreter program that uses the JS API and more
than a few internal interfaces (some of these internal interfaces could
be replaced by <tt>jsapi.h</tt> calls). The js program built from this
source provides a test vehicle for evaluating scripts and calling functions,
trying out new debugger primitives, etc.
<h4>
jsarray.*, jsbool.*, jdsdate.*, jsfun.*, jsmath.*, jsnum.*, jsstr.*</h4>
These file pairs implement the standard classes and (where they exist)
their underlying primitive types. They have similar structure, generally
starting with class definitions and continuing with internal constructors,
finalizers, and helper functions.
<h4>
jsobj.*, jsscope.*</h4>
These two pairs declare and implement the JS object system. All of the
following happen here:
<ul>
<li>
creating objects by class and prototype, and finalizing objects;</li>
<li>
defining, looking up, getting, setting, and deleting properties;</li>
<li>
creating and destroying properties and binding names to them.</li>
</ul>
The details of a native object's map (scope) are mostly hidden in
<tt>jsscope.[ch]</tt>.
<h4>
jsatom.c, jsatom.h</h4>
The atom manager. Contains well-known string constants, their atoms, the
global atom hash table and related state, the js_Atomize() function that
turns a counted string of bytes into an atom, and literal pool (<tt>JSAtomMap</tt>)
methods.
<h4>
jsgc.c, jsgc.h</h4>
[TBD]
<h4>
jsinterp.*, jscntxt.*</h4>
The bytecode interpreter, and related functions such as Call and AllocStack,
live in <i>jsinterp.c</i>. The JSContext constructor and destructor are
factored out into <i>jscntxt.c</i> for minimal linking when the compiler
part of JS is split from the interpreter part into a separate program.
<h4>
jsemit.*, jsopcode.tbl, jsopcode.*, jsparse.*, jsscan.*, jsscript.*</h4>
Compiler and decompiler modules. The <i>jsopcode.tbl</i> file is a C preprocessor
source that defines almost everything there is to know about JS bytecodes.
See its major comment for how to use it. For now, a debugger will use it
and its dependents such as <i>jsopcode.h</i> directly, but over time we
intend to extend <i>jsdbgapi.h</i> to hide uninteresting details and provide
conveniences. The code generator is split across paragraphs of code in
<i>jsparse.c</i>,
and the utility methods called on <tt>JSCodeGenerator</tt> appear in <i>jsemit.c</i>.
Source notes generated by <i>jsparse.c</i> and
<i>jsemit.c</i> are used
in <i>jsscript.c</i> to map line number to program counter and back.
<h4>
jstypes.h, jslog2.c</h4>
Fundamental representation types and utility macros. This file alone among
all .h files in JSRef must be included first by .c files. It is not nested
in .h files, as other prerequisite .h files generally are, since it is
also a direct dependency of most .c files and would be over-included if
nested in addition to being directly included. The one "not-quite-a-macro
macro" is the <tt>JS_CeilingLog2()</tt> function in <i>jslog2.c</i>.
<h4>
jsarena.c, jsarena.h</h4>
Last-In-First-Out allocation macros that amortize malloc costs and allow
for en-masse freeing. See the paper mentioned in prarena.h's major comment.
<h4>
jsutil.c, jsutil.h</h4>
The <tt>JS_ASSERT</tt> macro is used throughout JSRef source as a proof
device to make invariants and preconditions clear to the reader, and to
hold the line during maintenance and evolution against regressions or violations
of assumptions that it would be too expensive to test unconditionally at
run-time. Certain assertions are followed by run-time tests that cope with
assertion failure, but only where I'm too smart or paranoid to believe
the assertion will never fail...
<h4>
jsclist.h</h4>
Doubly-linked circular list struct and macros.
<h4>
jscpucfg.c</h4>
This standalone program generates <i>jscpucfg.h</i>, a header file containing
bytes per word and other constants that depend on CPU architecture and
C compiler type model. It tries to discover most of these constants by
running its own experiments on the build host, so if you are cross-compiling,
beware.
<h4>
prdtoa.c, prdtoa.h</h4>
David Gay's portable double-precision floating point to string conversion
code, with Permission To Use notice included.
<h4>
prhash.c, prhash.h</h4>
Portable, extensible hash tables. These use multiplicative hash for strength
reduction over division hash, yet with very good key distribution over
power of two table sizes. Collisions resolve via chaining, so each entry
burns a malloc and can fragment the heap.
<h4>
prlong.c, prlong.h</h4>
64-bit integer emulation, and compatible macros that use C's long long
type where it exists (my last company mapped long long to a 128-bit type,
but no real architecture does 128-bit ints yet).
<h4>
jsosdep.h</h4>
Annoying OS dependencies rationalized into a few "feature-test" macros
such as <tt>JS_HAVE_LONG_LONG</tt>.
<h4>
jsprf.*</h4>
Portable, buffer-overrun-resistant sprintf and friends. For no good reason
save lack of time, the %e, %f, and %g formats cause your system's native
sprintf, rather than <tt>JS_dtoa()</tt>, to be used. This bug doesn't affect
JSRef, because it uses its own <tt>JS_dtoa()</tt> call in <i>jsnum.c</i>
to convert from double to string, but it's a bug that we'll fix later,
and one you should be aware of if you intend to use a <tt>JS_*printf()</tt>
function with your own floating type arguments - various vendor sprintf's
mishandle NaN, +/-Inf, and some even print normal floating values inaccurately.
<h4>
prmjtime.c, prmjtime.h</h4>
Time functions. These interfaces are named in a way that makes local vs.
universal time confusion likely. Caveat emptor, and we're working on it.
To make matters worse, Java (and therefore JavaScript) uses "local" time
numbers (offsets from the epoch) in its Date class.
<h2>
<a NAME="Resources"></a>Additional Resources (links, API docs, and newsgroups)</h2>
<ul>
<li><a href ="http://www.mozilla.org/js/">http://www.mozilla.org/js/</a>
<li><a href ="http://www.mozilla.org/js/spidermonkey/">http://www.mozilla.org/js/spidermonkey/</a>
<li><a href ="news://news.mozilla.org/netscape.public.mozilla.jseng">news://news.mozilla.org/netscape.public.mozilla.jseng</a>
</ul>
</body>
</html>