-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
330 lines (290 loc) · 15.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import torch
import os
from torch import nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, TensorDataset
import json
import time
from torch.utils.tensorboard import SummaryWriter
from utils import set_seed
import argparse
from config import Config
from dataset import *
from dataloader import intrain_dataset_factory
from tree_anns import TreeANNs
import math
from tqdm import tqdm
import numpy as np
from metric import precision, recall
from evaluate import val_test
from loguru import logger
import datetime
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-f', '--file', type=str, default="", help='config json file')
parser.add_argument('-e', '--extra', type=str, default="", help='extra suffix of log dir')
# parser.add_argument("-l", "--savelast", action="store_true")
parser.add_argument("-u", "--upd_first", action="store_true")
parser.add_argument("-s","--seed", type=int, default=1)
parser.add_argument("-d","--device", type=str, default="")
parser.add_argument("-i","--ivfdevice", type=str, default="")
parser.add_argument("-v","--eval", type=str, default="")
parser.add_argument("--start", type=int, default=0)
parser.add_argument("--stop", type=int, default=150)
parser.add_argument("--interval", type=int, default=20)
parser.add_argument("-x","--extra_points", type=int, default=[], nargs="+")
args = parser.parse_args()
for k, v in args.__dict__.items():
print(f"self.{k} = '{v}'")
if args.eval != "" and args.file == "":
args.file = os.path.join(os.path.dirname(args.eval), "config.json")
if args.file != "":
with open(args.file, "r") as f:
conf_dict = json.load(f)
conf = Config(**conf_dict)
else:
conf = Config()
if args.device != "":
conf.device = args.device
if args.ivfdevice != "":
conf.ivf_device = args.ivfdevice
if args.extra != "":
conf.extra = args.extra
logger.debug(conf.getname())
set_seed(args.seed)
r = 0
if args.eval != "":
conf.train_mode = "only_test"
logger.debug(conf.train_mode)
ds = dataset_factory(conf.dataset_name, conf.train_set_len, conf.self_train_set_len, conf.train_mode)
item_embedding = torch.from_numpy(ds.data)
init_flag = (conf.load_tree == "" and args.eval == "" and conf.load_all == "")
init_st = time.time()
trainer = TreeANNs(ds.data, conf, tree_list= None, model_list = None, init= init_flag, metric=ds.metric)
if args.eval != "":
print("loading...")
trainer.load(args.eval)
trainer.build_faiss_index()
test_queries = torch.from_numpy(ds.test_queries)
# test_queries = torch.from_numpy(ds.self_test_queries) # TMP MOD
if conf.norm_query:
test_queries = F.normalize(test_queries, dim=1)
if isinstance(ds, AnnDatasetSelfTrain):
id_test_queries = torch.from_numpy(ds.self_test_queries)
if conf.norm_query:
id_test_queries = F.normalize(id_test_queries, dim=1)
else:
id_test_queries = None
# print("warm up")
# val_test(test_queries, item_embedding) # warmup
print("start evalution")
res, time_cost, retrieve, ivf_time, ndis, res2, time_cost2, retrieve_cost2, ivf_cost2, ndis2, resm, time_costm, retrieve_costm, ivf_costm, ndism = val_test(trainer, test_queries, ds.test_gts, id_test_queries, ds.self_test_gts if isinstance(ds, AnnDatasetSelfTrain) else None, args.start, args.stop, args.interval, args.extra_points)
with open("{}/time_recall_{}_{}.json".format(args.eval, datetime.datetime.now().strftime("%y%m%d%H%M%S"), args.extra), "w") as f:
json.dump({"time":time_cost, "recall": res, "retrieve_time": retrieve, "search_time": ivf_time, "ndis": ndis,
"time_id":time_cost2, "recall_id": res2, "retrieve_time_id": retrieve_cost2, "search_time_id": ivf_cost2, "ndis_id": ndis2,
"time_tot":time_costm, "recall_tot": resm, "retrieve_time_tot": retrieve_costm, "search_time_tot": ivf_costm, "ndis_tot": ndism}, f)
print(res, time_cost)
print(res2, time_cost2)
print(resm, time_costm)
exit()
# reload and eval ends here
my_log_dir = "logs/"+ conf.dataset_name + "/" + conf.getname()
writer = SummaryWriter(log_dir = my_log_dir)
with open(my_log_dir+"/config.json", "w") as f:
json.dump(conf.__dict__, f)
logger.add(my_log_dir+"/{time}.log")
logger.debug(f"SAVE TO: {my_log_dir}")
if init_flag:
try:
logger.debug("Init time : %f s" % (time.time()- init_st))
trainer.save_trees(f"{my_log_dir}/inited_tree")
except Exception as e:
print(e)
epoch = 0
if conf.load_all != "":
if os.path.exists(os.path.join(conf.load_all, "ckpt.pth")):
optimizer_dict, load_epoch = trainer.load_ckpt(conf.load_all)
print(load_epoch, "load_epoch")
epoch = load_epoch
else:
trainer.load(conf.load_all)
if conf.load_tree != "":
trainer.load_trees(conf.load_tree)
trainer.build_faiss_index()
train_query = (conf.train_mode == "all" or conf.train_mode == "query")
train_self = (conf.train_mode == "all" or conf.train_mode == "self")
intrain_ds = intrain_dataset_factory(ds, -1, 10000, conf.norm_query, conf.eval_topk) # pin_dev=conf.device
print(train_query, train_self)
def get_train_loader():
if train_query:
train_loader = intrain_ds.train_dataloader(conf.bs, trainer.tree_list[r].bucket_order, trainer.tree_list[r].bucket_to_path, conf.used_label_num)
if train_self:
self_train_loader = intrain_ds.self_train_dataloader(conf.bs, trainer.tree_list[r].bucket_order, trainer.tree_list[r].bucket_to_path, conf.used_label_num)
if train_query and train_self:
main_train_loader = train_loader
second_train_loader = self_train_loader
elif train_query:
main_train_loader = train_loader
second_train_loader = None
elif train_self:
main_train_loader = self_train_loader
second_train_loader = None
else:
raise ValueError("No train data")
return main_train_loader, second_train_loader
main_train_loader, second_train_loader = get_train_loader()
writer.add_text("conf", str(json.dumps(conf.__dict__)), 0)
optimizer = torch.optim.Adam(trainer.model_list[r].parameters(), lr=conf.lr, amsgrad=True)
if epoch > 0:
optimizer.load_state_dict(optimizer_dict)
min_val_loss = 1e9
valid_target_idx = epoch
update_idx = epoch
max_val_recall = 0.0
layer_weight = conf.layer_weight
upd_flag = args.upd_first
tree = trainer.tree_list[r]
while epoch < conf.epoch:
if epoch - update_idx > conf.upd_patient:
update_idx = epoch
upd_flag = True
if max_val_recall < 0.98 and (epoch+1) % conf.upd_interval == 0 or upd_flag:
trainer.save_ckpt(f"{my_log_dir}/ckpt_{epoch}", epoch, optimizer)
logger.debug(f"updating...(upd_flag :{upd_flag}, balance_factor: {conf.balance_factor})")
upd_flag = False
if conf.upd_method == "bliss":
bucket_order = trainer.bliss_update(item_embedding, 2)
trainer.build_faiss_index()
elif conf.upd_method == "layer":
upd_bs = 20000
self_train_queries = torch.from_numpy(intrain_ds.ds.data[:intrain_ds.ds.self_train_set_len-intrain_ds.val_num])
trainer.update_topdown(intrain_ds.train_queries, intrain_ds, intrain_ds.train_gts, self_train_queries, intrain_ds.self_train_gts, 15, 1, upd_bs, conf.balance_factor)
elif conf.upd_method == "batl":
bucket_order = trainer.balance_update(item_embedding)
trainer.tree_list[0].update_index_reconstruct(ds.data, bucket_order)
trainer.build_faiss_index()
elif conf.upd_method == "batl_layer":
bucket_order = trainer.balance_update_layer(item_embedding)
trainer.build_faiss_index()
elif conf.upd_method == "last_layer":
upd_bs = 20000
self_train_queries = torch.from_numpy(intrain_ds.ds.data[:intrain_ds.ds.self_train_set_len-intrain_ds.val_num])
trainer.update(intrain_ds.train_queries, intrain_ds.train_gts, self_train_queries, intrain_ds.self_train_gts, 15, 1, upd_bs, conf.balance_factor)
elif conf.upd_method =="link":
upd_bs = 20000
self_train_queries = torch.from_numpy(intrain_ds.ds.data[:intrain_ds.ds.self_train_set_len])
trainer.update_2(intrain_ds.train_queries, intrain_ds.train_gts, self_train_queries, torch.concat((intrain_ds.self_train_gts, intrain_ds.self_val_gts)), 15, 1, upd_bs, conf.balance_factor)
elif conf.upd_method =="link_impl":
upd_bs = 20000
topt = 15
train_queries = intrain_ds.train_queries
train_gts = intrain_ds.train_gts[:, :topt]
self_train_queries = torch.from_numpy(intrain_ds.ds.data[:intrain_ds.ds.self_train_set_len])
trainer.update_final(train_queries, train_gts, self_train_queries, torch.concat((intrain_ds.self_train_gts, intrain_ds.self_val_gts)), topt, 1, upd_bs, conf.balance_factor, 5)
trainer.save_ckpt(f"{my_log_dir}/just_after_upd_ep{epoch}", epoch, optimizer)
main_train_loader, second_train_loader = get_train_loader()
if conf.reinit_after_upd:
logger.debug("do reinit emb")
torch.nn.init.kaiming_uniform_(trainer.model_list[0].emb.weight, a=math.sqrt(5))
for m in trainer.model_list:
m.train()
train_st = time.time()
sum_train_loss = 0
count_train_loss = 0
layer_loss = [0 for _ in range(trainer.tree_list[r].tree_height)]
self_layer_loss = [0 for _ in range(trainer.tree_list[r].tree_height)]
if second_train_loader:
it = iter(second_train_loader)
for (batch_x, path) in tqdm(main_train_loader):
try:
(batch_x2, path2) = next(it)
except StopIteration:
# self_train_loader = intrain_ds.self_train_dataloader(conf.bs, trainer.tree_list[r].bucket_order, trainer.tree_list[r].bucket_to_path, norm = conf.norm_query)
it = iter(second_train_loader)
(batch_x2, path2) = next(it)
sum_loss = 0
for i in range(1,trainer.tree_list[r].tree_height+1):#
loss_now = trainer.get_loss(r, i, batch_x, path, 0)
layer_loss[tree.tree_height-i] += loss_now.detach().cpu().item()
sum_loss += loss_now
loss_now2 = trainer.get_loss(r, i, batch_x2, path2, 1)
self_layer_loss[tree.tree_height-i] += loss_now2.detach().cpu().item()
sum_loss += loss_now2
sum_train_loss += (sum_loss.item())
sum_loss.backward()
# print(sum_loss.item())
count_train_loss += 1
optimizer.step()# update the parameters
optimizer.zero_grad()# clean the gradient
else:
for (batch_x, path) in tqdm(main_train_loader):
sum_loss = 0
for i in range(1,trainer.tree_list[r].tree_height+1):#
loss_now = trainer.get_loss(r, i, batch_x, path, 0)
layer_loss[tree.tree_height-i] += loss_now.detach().cpu().item()
sum_loss += loss_now
sum_train_loss += (sum_loss.item())
sum_loss.backward()
# print(sum_loss.item())
count_train_loss += 1
optimizer.step()# update the parameters
optimizer.zero_grad()# clean the gradient
for i in range(trainer.tree_list[r].tree_height):
writer.add_scalar(f"loss/train_loss_l_{i}", layer_loss[i]/count_train_loss, epoch)
for i in range(trainer.tree_list[r].tree_height):
writer.add_scalar(f"loss/self_train_loss_l_{i}", self_layer_loss[i]/count_train_loss, epoch)
logger.debug(f"epoch {epoch} train loss: {sum_train_loss/count_train_loss}")
writer.add_scalar("loss/train_loss", sum_train_loss/count_train_loss, epoch)
logger.debug("train cost time {} s", time.time() - train_st)
if epoch % conf.val_interval == 0:
trainer.save_ckpt(f"{my_log_dir}/after_ep{epoch}", epoch, optimizer)
val_st = time.time()
for m in trainer.model_list:
m.eval()
samples= conf.eval_num
eval_beam = conf.eval_beam
eval_topk = conf.eval_topk
if train_query:
val_queries = intrain_ds.val_queries
result_history, retrieve_time, ivf_time, ndis_now = trainer.predict(val_queries[:samples],topm=eval_beam,num_beams=eval_beam,topk=eval_topk,retrieve_batch_size=100,distri=0)
# print(result_history[:10])
# for i in range(result_history.shape[1]):
# print(l2(val_queries[0].numpy(), ds.data[result_history[0][i]]))
# for j in range(20):
# for i in range(10):
# print(l2(intrain_ds.val_queries[j].numpy(), ds.data[intrain_ds.val_gts[j][i]]))
# print("*"*10)
logger.debug(f"epoch {epoch}:eval ({samples}/{val_queries.shape[0]}) :")
res_list= []
for kk in range(10, intrain_ds.val_gts.shape[1]+1, 10):
res = recall(result_history[:,:kk], intrain_ds.val_gts[:,:kk].numpy())
res_list.append(res)
writer.add_scalar(f"metrics/reall@{kk}", res, epoch)
logger.debug(f"recall@{kk} {res}")
logger.debug(f"(val cost time {time.time()- val_st} s")
writer.add_scalar("metrics/ndis", ndis_now, epoch)
writer.add_scalar("metrics/retrieve_time", retrieve_time, epoch)
writer.add_scalar("metrics/ivf_time", ivf_time, epoch)
res = res_list[0]
if train_self:
val_queries = intrain_ds.self_val_queries
logger.debug(f"epoch {epoch}:eval self ({samples}/{val_queries.shape[0]}) :")
result_history, retrieve_time, ivf_time, ndis_now = trainer.predict(intrain_ds.self_val_queries[:samples],topm=eval_beam,num_beams=eval_beam,topk=eval_topk,retrieve_batch_size=100,distri=1)
res_list_self = []
for kk in range(10, intrain_ds.self_val_gts.shape[1]+1, 10):
res_self = recall(result_history[:,:kk], intrain_ds.self_val_gts[:,:kk].numpy())
res_list_self.append(res_self)
writer.add_scalar(f"metrics/reall@{kk}_self", res_self, epoch)
logger.debug(f"recall@{kk}_self {res_self}")
logger.debug(f"(val cost time {time.time()- val_st} s")
if not train_query:
res = res_list_self[0]
if res > max_val_recall:
logger.debug(f"best epoch {epoch}")
valid_target_idx = epoch
update_idx = epoch
max_val_recall = res
trainer.save_ckpt(f"{my_log_dir}/weight", epoch, optimizer)
if epoch - valid_target_idx > conf.es_patient:
break
epoch += 1