-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
46 lines (39 loc) · 1.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch
import os
import random
import numpy as np
import math
from joblib import Parallel, delayed
def calculate_cluster_centers(X, bucket_order, bucket_num, num_processes=os.cpu_count()):
def calculate_cluster_center(i):
indices = np.where(bucket_order == i)[0]
return np.mean(X[indices], axis=0)
centers = Parallel(n_jobs=num_processes)(delayed(calculate_cluster_center)(i) for i in range(bucket_num))
cluster_centers = np.array(centers)
return cluster_centers
def calculate_cluster_centers_slow(X, bucket_order, bucket_num):
cluster_centers = np.zeros((bucket_num, X.shape[1]))
for i in range(bucket_num):
indices = np.where(bucket_order == i)[0]
cluster_centers[i] = np.mean(X[indices], axis=0)
return cluster_centers
def set_seed(seed = 2000, deterministic = True):
"""
links: https://github.com/pytorch/pytorch/issues/7068
:param seed: random seed
:return: None
"""
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if deterministic:
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
else:
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
def l2(x, y):
return math.sqrt(((x-y)**2).sum())