diff --git a/README.md b/README.md index 27f27eb..7d4246f 100644 --- a/README.md +++ b/README.md @@ -15,9 +15,9 @@ The **unravelsports** package aims to aid researchers, analysts and enthusiasts 🌀 Features ----- -- ⚽ Converting **positional soccer data** into graphs to train **graph neural networks** by leveraging the powerful [**Kloppy**](https://github.com/PySport/kloppy/tree/master) data conversion standard and [**Spektral**](https://github.com/danielegrattarola/spektral) - a flexible framework for creating graph neural networks. -- ⚽ Randomizing and splitting data into **train, test and validation sets** along matches, sequences or possessions to avoid leakage and improve model quality. -- ⚽ Due to the power of **Kloppy**, **unravelsports** supports these actions for _Metrica_, _Sportec_, _Tracab (CyronHego)_, _SecondSpectrum_, _SkillCorner_ and _StatsPerform_ tracking data. +⚽ Converting **positional soccer data** into graphs to train **graph neural networks** by leveraging the powerful [**Kloppy**](https://github.com/PySport/kloppy/tree/master) data conversion standard and [**Spektral**](https://github.com/danielegrattarola/spektral) - a flexible framework for creating graph neural networks. +⚽ Randomizing and splitting data into **train, test and validation sets** along matches, sequences or possessions to avoid leakage and improve model quality. +⚽ Due to the power of **Kloppy**, **unravelsports** supports these actions for _Metrica_, _Sportec_, _Tracab (CyronHego)_, _SecondSpectrum_, _SkillCorner_ and _StatsPerform_ tracking data. 🌀 Getting Started ----- @@ -30,7 +30,7 @@ The **unravelsports** package aims to aid researchers, analysts and enthusiasts For now, follow the [**Graph Converter Tutorial**](examples/1_tutorial_graph_converter.ipynb), more documentation will follow! Additional reading: -- 📖 [A Graph Neural Network Deep-dive into Successful Counterattacks {A. Sahasrabudhe & J. Bekkers, 2023}](https://github.com/USSoccerFederation/ussf_ssac_23_soccer_gnn/tree/main) +📖 [A Graph Neural Network Deep-dive into Successful Counterattacks {A. Sahasrabudhe & J. Bekkers, 2023}](https://github.com/USSoccerFederation/ussf_ssac_23_soccer_gnn/tree/main) 🌀 Installation ---- diff --git a/unravel/utils/objects/custom_spektral_dataset.py b/unravel/utils/objects/custom_spektral_dataset.py index dad8292..5a20ac5 100644 --- a/unravel/utils/objects/custom_spektral_dataset.py +++ b/unravel/utils/objects/custom_spektral_dataset.py @@ -55,8 +55,7 @@ def __convert(self, data) -> List[Graph]: return [g.to_spektral_graph() for g in self.data] elif isinstance(data[0], dict): return [ - Graph(x=g["x"], a=g["a"], e=g["e"], y=g["y"], id=g["id"]) - for g in data + Graph(x=g["x"], a=g["a"], e=g["e"], y=g["y"], id=g["id"]) for g in data ] else: raise NotImplementedError()