-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlights_train.py
71 lines (59 loc) · 2.38 KB
/
lights_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# This script generates the data for training the traffic lights sample,
# trains it, and saves the model to the file lights_model.h5 file.
# December 8th, Gorkem
import random
import tensorflow as tf
from tensorflow import keras
import sklearn.model_selection as sk
import numpy as np
def generate_driving_states(n):
list = []
for i in range(0, n):
# [r, y, g], for example [1, 0, 0] means red light is on, amber and green are off
lightstate = random.choice([[1,0,0], [0,1,0], [0,0,1]])
distance = random.random() # 1.0 is 100 meters
lightstate.append(distance) #index 3 becomes distance
list.append(np.array(lightstate))
return np.array(list)
def calculate_labels(light_states):
labels = []
for s in light_states:
distance = s[3]
distanceNoise = random.random() * 0.02 # introduce 2% noise to distance
distance = min(max(distance + distanceNoise, 0.), 1.)
label = [] # [0,1] go, [1,0] brake
if s[0]==1: #red
if distance <= 0.6:
label=[0] # brake if less than 60m
else:
label=[1] # go
elif s[1]==1: #amber
if distance >= 0.1 and distance <= 0.8:
label=[0] # brake if more than 10m and less than 80m
else:
label=[1] # go
elif s[2]==1: #green
label=[1] # go
else:
print('Error. Two lights on at the same time.')
quit()
labels.append(np.array(label))
return np.array(labels)
states = generate_driving_states(50000)
labels = calculate_labels(states)
train_states, test_states, train_labels, test_labels = sk.train_test_split(states, labels, test_size=0.1)
model = keras.Sequential([
keras.layers.Flatten(input_shape=[4]),
keras.layers.Dense(11, activation=tf.nn.relu),
keras.layers.Dense(11, activation=tf.nn.relu),
keras.layers.Dense(1, activation=tf.nn.sigmoid)
])
model.compile(optimizer=keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False),
loss='mean_squared_error',
metrics=['accuracy'])
model.fit(train_states, train_labels, epochs=10)
test_loss, test_acc = model.evaluate(test_states, test_labels)
print('Test accuracy:', test_acc)
filename = './lights_model.h5'
print('Saving model to file: ', filename)
model.save(filename)