-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_train.py
331 lines (245 loc) · 11.8 KB
/
eval_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
from pickletools import optimize
from uvcgan.config import Args
import torch
import os
from time import sleep
import numpy as np
import monai
from monai.transforms import AddChannel, Compose, Resize, ScaleIntensity, ToTensor
from torch.utils.data import DataLoader, Dataset
from datasets.cyclegan import CycleGANDataset
import torchvision.transforms as transforms
from uvcgan.models.generator import construct_generator
from uvcgan.torch.funcs import get_torch_device_smart, seed_everything
import os
from datasets.segmentation import SegModel
import pytorch_lightning as pl
from uvcgan.cgan import construct_model
import segmentation_models_pytorch as smp
import argparse
import math
import tensorboard_logger as tb_logger
import pandas as pd
from tqdm import tqdm
from utils.helper import i_t_i_translation
def parse_option():
parser = argparse.ArgumentParser('argument for training')
parser.add_argument('--print_freq', type=int, default=10,
help='print frequency')
parser.add_argument('--save_freq', type=int, default=50,
help='save frequency')
parser.add_argument('--batch_size', type=int, default=50,
help='batch_size')
parser.add_argument('--num_workers', type=int, default=4,
help='num of workers to use')
parser.add_argument('--epochs', type=int, default=100,
help='number of training epochs')
# optimization
parser.add_argument('--learning_rate', type=float, default=0.5,
help='learning rate')
parser.add_argument('--lr_decay_epochs', type=str, default='50,100,150',
help='where to decay lr, can be a list')
parser.add_argument('--lr_decay_rate', type=float, default=0.1,
help='decay rate for learning rate')
parser.add_argument('--weight_decay', type=float, default=1e-4,
help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9,
help='momentum')
# model dataset
parser.add_argument('--model', type=str, default='resnet50')
parser.add_argument('--dataset', type=str, default='crossmoda',
choices=['cifar10', 'cifar100', 'svhn', 'isic','crossmoda','cat'], help='dataset')
parser.add_argument('--mean', type=str, help='mean of dataset in path in form of str tuple')
parser.add_argument('--std', type=str, help='std of dataset in path in form of str tuple')
parser.add_argument('--data_folder', type=str, default=None, help='path to custom dataset')
parser.add_argument('--size', type=int, default=32, help='parameter for RandomResizedCrop')
# temperature
parser.add_argument('--temp', type=float, default=0.5,
help='temperature for loss function')
# other setting
parser.add_argument('--cosine', action='store_true',
help='using cosine annealing')
parser.add_argument('--syncBN', action='store_true',
help='using synchronized batch normalization')
parser.add_argument('--warm', action='store_true',
help='warm-up for large batch training')
parser.add_argument('--trial', type=str, default='0',
help='id for recording multiple runs')
opt = parser.parse_args()
# check if dataset is path that passed required arguments
if opt.dataset == 'path':
assert opt.data_folder is not None \
and opt.mean is not None \
and opt.std is not None
# set the path according to the environment
if opt.data_folder is None:
opt.data_folder = '../../DATA/'
opt.model_path = 'saved_models/{}_models_seg'.format(opt.dataset)
opt.tb_path = 'logs/{}_models_seg'.format(opt.dataset)
opt.save_folder = opt.model_path
if not os.path.isdir(opt.save_folder):
os.makedirs(opt.save_folder)
if opt.batch_size > 256:
opt.warm = True
if opt.warm:
opt.warmup_from = 0.01
opt.warm_epochs = 10
if opt.cosine:
eta_min = opt.learning_rate * (opt.lr_decay_rate ** 3)
opt.warmup_to = eta_min + (opt.learning_rate - eta_min) * (
1 + math.cos(math.pi * opt.warm_epochs / opt.epochs)) / 2
else:
opt.warmup_to = opt.learning_rate
return opt
class AverageMeter():
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(args, optimizer, epoch):
lr = args.learning_rate
if args.cosine:
eta_min = lr * (args.lr_decay_rate ** 3)
lr = eta_min + (lr - eta_min) * (
1 + math.cos(math.pi * epoch / args.epochs)) / 2
else:
steps = np.sum(epoch > np.asarray(args.lr_decay_epochs))
if steps > 0:
lr = lr * (args.lr_decay_rate ** steps)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def warmup_learning_rate(args, epoch, batch_id, total_batches, optimizer):
if args.warm and epoch <= args.warm_epochs:
p = (batch_id + (epoch - 1) * total_batches) / \
(args.warm_epochs * total_batches)
lr = args.warmup_from + p * (args.warmup_to - args.warmup_from)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def set_optimizer(model):
return torch.optim.Adam(model.parameters(), lr=0.0001)
def train(train_loader, model, segmentation, criterion, optimizer, epoch,opt,logger):
"""one epoch training"""
losses = AverageMeter()
for idx, batch in enumerate(tqdm(train_loader)):
images = batch['image'].cuda(non_blocking=True)
labels = batch['label'].cuda(non_blocking=True)
# warm-up learning rate
warmup_learning_rate(opt, epoch, idx, len(train_loader), optimizer)
# compute loss
with torch.no_grad():
features = model(images)
output = segmentation(features.detach())
loss = criterion(output, labels)
# SGD
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f'Batch loss -> {loss}')
# Lets compute metrics for some threshold
# first convert mask values to probabilities, then
# apply thresholding
prob_mask = output.sigmoid()
pred_mask = (prob_mask > 0.5).float()
# We will compute IoU metric by two ways
# 1. dataset-wise
# 2. image-wise
# but for now we just compute true positive, false positive, false negative and
# true negative 'pixels' for each image and class
# these values will be aggregated in the end of an epoch
tp, fp, fn, tn = smp.metrics.get_stats(pred_mask.long(), labels.long(), mode="binary")
losses.update(loss.item(), labels.shape[0])
# sum_loss += loss.item() * opt.batch_size
# count += batch_size
# print("[Epoch %d, Iteration %5d] loss: %.3f" % (epoch+1, idx+1, loss.item()))
print("Epoch:{}/{}..".format(epoch+1, opt.epochs),
"Train Loss: {:.3f}..".format(losses.avg))
history = {
"loss": losses.avg,
"tp": tp,
"fp": fp,
"fn": fn,
"tn": tn,
}
return history
def set_loaders(opt):
if opt.dataset == 'cat':
# init train, val, test sets
from segmentation_models_pytorch.datasets import SimpleOxfordPetDataset
root = './data_files'
train_dataset = SimpleOxfordPetDataset(root, "train")
valid_dataset = SimpleOxfordPetDataset(root, "valid")
test_dataset = SimpleOxfordPetDataset(root, "test")
# It is a good practice to check datasets don`t intersects with each other
assert set(test_dataset.filenames).isdisjoint(set(train_dataset.filenames))
assert set(test_dataset.filenames).isdisjoint(set(valid_dataset.filenames))
assert set(train_dataset.filenames).isdisjoint(set(valid_dataset.filenames))
print(f"Train size: {len(train_dataset)}")
print(f"Valid size: {len(valid_dataset)}")
print(f"Test size: {len(test_dataset)}")
dl = DataLoader(train_dataset, batch_size=16, shuffle=True)
val_dl = DataLoader(valid_dataset, batch_size=16, shuffle=False)
test_dl = DataLoader(test_dataset, batch_size=16, shuffle=False)
else:
ds = CycleGANDataset('~/data/crossmoda2022_training/',is_train=True,transform = transforms.Compose([transforms.Grayscale(num_output_channels=1),transforms.CenterCrop((206,206)),transforms.ToTensor()])) # transforms.Normalize(0.0085,0.2753)
val_ds = CycleGANDataset('~/data/crossmoda2022_training/',is_train=False,transform = transforms.Compose([transforms.Grayscale(num_output_channels=1),transforms.CenterCrop((206,206)),transforms.ToTensor()])) # transforms.Normalize(0.0085,0.2753)
dl = DataLoader(ds, batch_size=opt.batch_size,shuffle=False)
val_dl = DataLoader(val_ds, batch_size=opt.batch_size,shuffle=False)
return (dl,val_dl)
def main():
opt = parse_option()
dl, val_dl = set_loaders(opt)
gen_ab = i_t_i_translation()
#segmentation = SegModel("unet", "resnet34", in_channels=1, out_classes=1)
segmentation = smp.create_model(
arch= "unet", encoder_name="resnet34", in_channels=1, classes=1)
criterion = smp.losses.DiceLoss(smp.losses.BINARY_MODE, from_logits=True)
#criterion = smp.losses.JaccardLoss(smp.losses.BINARY_MODE, from_logits=True)
optimizer = set_optimizer(segmentation.cuda())
logger = tb_logger.Logger(logdir=opt.tb_path, flush_secs=2)
gen_ab.eval()
for epoch in range(opt.epochs):
#segmentation.train()
adjust_learning_rate(opt, optimizer, epoch)
trained_model = train(dl,gen_ab,segmentation,criterion,optimizer,epoch,opt,logger)
tp = torch.cat([trained_model['tp']])
fp = torch.cat([trained_model['fp']])
fn = torch.cat([trained_model['fn']])
tn = torch.cat([trained_model['tn']])
# per image IoU means that we first calculate IoU score for each image
# and then compute mean over these scores
per_image_iou = smp.metrics.iou_score(tp, fp, fn, tn, reduction="micro-imagewise")
# dataset IoU means that we aggregate intersection and union over whole dataset
# and then compute IoU score. The difference between dataset_iou and per_image_iou scores
# in this particular case will not be much, however for dataset
# with "empty" images (images without target class) a large gap could be observed.
# Empty images influence a lot on per_image_iou and much less on dataset_iou.
dataset_iou = smp.metrics.iou_score(tp, fp, fn, tn, reduction="micro")
stage = 'train'
metrics = {
f"{stage}_per_image_iou": per_image_iou,
f"{stage}_dataset_iou": dataset_iou,
}
logger.log_value("loss", trained_model['loss'],epoch)
logger.log_value(f"{stage}_per_image_iou", metrics[f"{stage}_per_image_iou"], epoch)
logger.log_value(f"{stage}_dataset_iou", metrics[f"{stage}_dataset_iou"], epoch)
# logger.log_value('tp', tp, epoch)
# logger.log_value('fp', fp, epoch)
# logger.log_value('fn', fn, epoch)
# logger.log_value('tn', tn, epoch)
logger.log_value('learning_rate', optimizer.param_groups[0]['lr'], epoch)
torch.save(segmentation, f'{opt.save_folder}.pth')
print('FINISH.')
# loss, val_acc = validate(val_dl, model, classifier, criterion, opt)
# if val_acc > best_acc:
# best_acc = val_acc
if __name__ == "__main__":
main()