Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DUTest function Error #56

Open
hkarakurt8742 opened this issue Nov 14, 2022 · 1 comment
Open

DUTest function Error #56

hkarakurt8742 opened this issue Nov 14, 2022 · 1 comment

Comments

@hkarakurt8742
Copy link

Hello,
I am using Sierra and I replicated all results from vignette. I tried to use with my own data with same steps but in DUTest step I have an error:

Error in apply(annot.subset, 1, function(x) { : dim(X) must have a positive length

My function is:

res.table <- DUTest(lung_peaks,population.1 = "a",population.2 = "b",exp.thresh = 0.1,feature.type = c("UTR3", "exon"))

What might be the problem? I tested it with other clusters too but I have the same error.

Thank you in advance

`R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.5 LTS

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=tr_TR.UTF-8
[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=tr_TR.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=tr_TR.UTF-8 LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=tr_TR.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods base

other attached packages:
[1] DEXSeq_1.42.0 RColorBrewer_1.1-3
[3] AnnotationDbi_1.58.0 DESeq2_1.36.0
[5] SummarizedExperiment_1.26.1 MatrixGenerics_1.8.1
[7] matrixStats_0.62.0 Biobase_2.56.0
[9] BiocParallel_1.30.4 patchwork_1.1.2
[11] dplyr_1.0.10 sp_1.5-0
[13] SeuratObject_4.1.2 Seurat_4.2.0
[15] BSgenome.Hsapiens.UCSC.hg38_1.4.4 BSgenome_1.64.0
[17] rtracklayer_1.56.1 Biostrings_2.64.1
[19] XVector_0.36.0 GenomicRanges_1.48.0
[21] GenomeInfoDb_1.32.4 IRanges_2.30.1
[23] S4Vectors_0.34.0 BiocGenerics_0.42.0
[25] magrittr_2.0.3 Sierra_0.99.27

loaded via a namespace (and not attached):
[1] utf8_1.2.2 reticulate_1.26 R.utils_2.12.0
[4] tidyselect_1.2.0 RSQLite_2.2.18 htmlwidgets_1.5.4
[7] grid_4.2.2 Rtsne_0.16 munsell_0.5.0
[10] codetools_0.2-18 ica_1.0-3 statmod_1.4.37
[13] interp_1.1-3 future_1.28.0 miniUI_0.1.1.1
[16] withr_2.5.0 spatstat.random_2.2-0 colorspace_2.0-3
[19] progressr_0.11.0 filelock_1.0.2 knitr_1.40
[22] rstudioapi_0.14 SingleCellExperiment_1.18.1 ROCR_1.0-11
[25] tensor_1.5 listenv_0.8.0 labeling_0.4.2
[28] GenomeInfoDbData_1.2.8 hwriter_1.3.2.1 polyclip_1.10-0
[31] farver_2.1.1 bit64_4.0.5 parallelly_1.32.1
[34] vctrs_0.4.2 generics_0.1.3 xfun_0.33
[37] biovizBase_1.44.0 BiocFileCache_2.4.0 R6_2.5.1
[40] doParallel_1.0.17 locfit_1.5-9.6 AnnotationFilter_1.20.0
[43] spatstat.utils_2.3-1 bitops_1.0-7 cachem_1.0.6
[46] DelayedArray_0.22.0 assertthat_0.2.1 promises_1.2.0.1
[49] BiocIO_1.6.0 scales_1.2.1 nnet_7.3-18
[52] rgeos_0.5-9 gtable_0.3.1 globals_0.16.1
[55] goftest_1.2-3 ensembldb_2.20.2 rlang_1.0.6
[58] genefilter_1.78.0 splines_4.2.2 lazyeval_0.2.2
[61] dichromat_2.0-0.1 spatstat.geom_2.4-0 checkmate_2.1.0
[64] abind_1.4-5 yaml_2.3.6 reshape2_1.4.4
[67] GenomicFeatures_1.48.4 backports_1.4.1 httpuv_1.6.6
[70] Hmisc_4.7-1 tools_4.2.2 ggplot2_3.3.6
[73] ellipsis_0.3.2 spatstat.core_2.4-4 ggridges_0.5.4
[76] Rcpp_1.0.9 plyr_1.8.7 base64enc_0.1-3
[79] progress_1.2.2 zlibbioc_1.42.0 purrr_0.3.5
[82] RCurl_1.98-1.9 prettyunits_1.1.1 rpart_4.1.19
[85] deldir_1.0-6 pbapply_1.5-0 cowplot_1.1.1
[88] zoo_1.8-11 ggrepel_0.9.1 cluster_2.1.4
[91] data.table_1.14.4 scattermore_0.8 lmtest_0.9-40
[94] RANN_2.6.1 ProtGenerics_1.28.0 fitdistrplus_1.1-8
[97] hms_1.1.2 mime_0.12 xtable_1.8-4
[100] XML_3.99-0.11 jpeg_0.1-9 gridExtra_2.3
[103] compiler_4.2.2 biomaRt_2.52.0 tibble_3.1.8
[106] KernSmooth_2.23-20 crayon_1.5.2 R.oo_1.25.0
[109] htmltools_0.5.3 mgcv_1.8-41 later_1.3.0
[112] Formula_1.2-4 geneplotter_1.74.0 tidyr_1.2.1
[115] DBI_1.1.3 dbplyr_2.2.1 MASS_7.3-58.1
[118] rappdirs_0.3.3 Matrix_1.5-1 cli_3.4.1
[121] R.methodsS3_1.8.2 parallel_4.2.2 Gviz_1.40.1
[124] igraph_1.3.5 pkgconfig_2.0.3 GenomicAlignments_1.32.1
[127] foreign_0.8-83 spatstat.sparse_2.1-1 plotly_4.10.0
[130] xml2_1.3.3 foreach_1.5.2 annotate_1.74.0
[133] stringr_1.4.1 VariantAnnotation_1.42.1 digest_0.6.29
[136] sctransform_0.3.5 RcppAnnoy_0.0.19 spatstat.data_2.2-0
[139] leiden_0.4.3 htmlTable_2.4.1 uwot_0.1.14
[142] restfulr_0.0.15 curl_4.3.3 shiny_1.7.2
[145] Rsamtools_2.12.0 rjson_0.2.21 nlme_3.1-160
[148] lifecycle_1.0.3 jsonlite_1.8.2 limma_3.52.4
[151] viridisLite_0.4.1 fansi_1.0.3 pillar_1.8.1
[154] lattice_0.20-45 KEGGREST_1.36.3 fastmap_1.1.0
[157] httr_1.4.4 survival_3.4-0 glue_1.6.2
[160] png_0.1-7 iterators_1.0.14 bit_4.0.4
[163] stringi_1.7.8 blob_1.2.3 latticeExtra_0.6-30
[166] memoise_2.0.1 irlba_2.3.5.1 future.apply_1.9.1
`

@rj-patrick
Copy link
Contributor

Sorry for the slow response. Can you confirm that the active identities in your Seurat object correspond to what is being input for population.1 and population.2?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants