-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
199 lines (165 loc) · 9.19 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import json
import os
import uvicorn
from fastapi import FastAPI
from fastapi import HTTPException
from fastapi import Request
from starlette.middleware.cors import CORSMiddleware
from dotenv import load_dotenv
from utils.data_conversion import parse_node_fields, parse_roi_fields, parse_edge_fields, get_wildcard
load_dotenv()
# have to load the dot env before importing the next line as the logging
# code is looking for an possible value in the .env file in order to start
# the logging.
from services import motif_search, motif_count
app = FastAPI()
# load a env variable from os
origins = json.loads(os.environ['ALLOW_ORIGINS'])
print(origins)
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/")
def read_root():
return {"Hello": "World!"}
@app.get("/401")
def four_zero_one():
raise HTTPException(status_code=401, detail="401: Unauthorized")
@app.post("/cypher")
async def search_motif(req: Request):
req = await req.json()
server = req['server']
version = req['version']
motif = req['motif']
lim = req['lim']
token = req['token']
return motif_search.search_motif(server, version, token, motif, lim)
@app.get("/count/motif={motif}")
def get_motif_count(motif: str):
return motif_count.get_absolute(motif)
@app.get("/rel_count/motif={motif}")
def get_relative_motif_count(motif: str):
return motif_count.get_relative(motif)
@app.post("/fetch_node_fields")
async def fetch_node_fields(req: Request):
from neuprint import Client, fetch_custom, fetch_all_rois
req = await req.json()
server = req['server']
version = req['version']
token = req['token']
client = Client(server, dataset=version, token=token)
neuron_types_query = 'MATCH(n:Neuron) WHERE EXISTS(n.type) RETURN DISTINCT n.type'
neuron_attributes_query = "MATCH (n: Neuron) UNWIND keys(n) AS property WITH DISTINCT property, apoc.meta.type(n[property]) AS type WHERE type <> 'PointValue' RETURN property, type"
cell_body_fibers_query = "MATCH(n:Neuron) WHERE n.cellBodyFiber <> 'null' RETURN DISTINCT n.cellBodyFiber"
neuron_classes_query = 'MATCH(n:Neuron) WHERE EXISTS(n.class) RETURN DISTINCT n.class'
neuron_birthtime_query = 'MATCH(n:Neuron) WHERE EXISTS(n.birthtime) RETURN DISTINCT n.birthtime'
neuron_somaSide_query = 'MATCH(n:Neuron) WHERE EXISTS(n.somaSide) RETURN DISTINCT n.somaSide'
neuron_entryNerve_query = 'MATCH(n:Neuron) WHERE EXISTS(n.entryNerve) RETURN DISTINCT n.entryNerve'
neuron_exitNerve_query = 'MATCH(n:Neuron) WHERE EXISTS(n.exitNerve) RETURN DISTINCT n.exitNerve'
neuron_hemilineage_query = 'MATCH(n:Neuron) WHERE EXISTS(n.hemilineage) RETURN DISTINCT n.hemilineage'
neuron_longTract_query = 'MATCH(n:Neuron) WHERE EXISTS(n.longTract) RETURN DISTINCT n.longTract'
neuron_modality_query = 'MATCH(n:Neuron) WHERE EXISTS(n.modality) RETURN DISTINCT n.modality'
neuron_origin_query = 'MATCH(n:Neuron) WHERE EXISTS(n.origin) RETURN DISTINCT n.origin'
neuron_predictedNt_query = 'MATCH(n:Neuron) WHERE EXISTS(n.predictedNt) RETURN DISTINCT n.predictedNt'
neuron_serialMotif_query = 'MATCH(n:Neuron) WHERE EXISTS(n.serialMotif) RETURN DISTINCT n.serialMotif'
neuron_somaNeuromere_query = 'MATCH(n:Neuron) WHERE EXISTS(n.somaNeuromere) RETURN DISTINCT n.somaNeuromere'
neuron_somaSide_query = 'MATCH(n:Neuron) WHERE EXISTS(n.somaSide) RETURN DISTINCT n.somaSide'
neuron_subclass_query = 'MATCH(n:Neuron) WHERE EXISTS(n.subclass) RETURN DISTINCT n.subclass'
neuron_systematicType_query = 'MATCH(n:Neuron) WHERE EXISTS(n.systematicType) RETURN DISTINCT n.systematicType'
neuron_target_query = 'MATCH(n:Neuron) WHERE EXISTS(n.target) RETURN DISTINCT n.target'
neuron_types = client.fetch_custom(neuron_types_query)['n.type'].values.tolist()
neuron_types_with_wildcard = get_wildcard(neuron_types)
neuron_classes = client.fetch_custom(neuron_classes_query)['n.class'].values.tolist()
neuron_classes_with_wildcard = get_wildcard(neuron_classes)
neuron_birthtimes = client.fetch_custom(neuron_birthtime_query)['n.birthtime'].values.tolist()
neuron_somaSides = client.fetch_custom(neuron_somaSide_query)['n.somaSide'].values.tolist()
neuron_entryNerve = client.fetch_custom(neuron_entryNerve_query)['n.entryNerve'].values.tolist()
neuron_entryNerve_with_wildcard = get_wildcard(neuron_entryNerve)
neuron_exitNerve = client.fetch_custom(neuron_exitNerve_query)['n.exitNerve'].values.tolist()
neuron_exitNerve_with_wildcard = get_wildcard(neuron_exitNerve)
neuron_hemilineage = client.fetch_custom(neuron_hemilineage_query)['n.hemilineage'].values.tolist()
neuron_hemilineage_with_wildcard = get_wildcard(neuron_hemilineage)
neuron_longTract = client.fetch_custom(neuron_longTract_query)['n.longTract'].values.tolist()
neuron_modality = client.fetch_custom(neuron_modality_query)['n.modality'].values.tolist()
neuron_origin = client.fetch_custom(neuron_origin_query)['n.origin'].values.tolist()
neuron_origin_with_wildcard = get_wildcard(neuron_origin)
neuron_predictedNt = client.fetch_custom(neuron_predictedNt_query)['n.predictedNt'].values.tolist()
neuron_somaSide = client.fetch_custom(neuron_somaSide_query)['n.somaSide'].values.tolist()
neuron_subclass = client.fetch_custom(neuron_subclass_query)['n.subclass'].values.tolist()
neuron_subclass_with_wildcard = get_wildcard(neuron_subclass)
neuron_systematicType = client.fetch_custom(neuron_systematicType_query)['n.systematicType'].values.tolist()
neuron_systematicType_with_wildcard = get_wildcard(neuron_systematicType)
neuron_target = client.fetch_custom(neuron_target_query)['n.target'].values.tolist()
neuron_target_with_wildcard = get_wildcard(neuron_target)
cell_body_fibers = client.fetch_custom(cell_body_fibers_query)['n.cellBodyFiber'].values.tolist()
neuron_attributes = client.fetch_custom(neuron_attributes_query)
allRois = fetch_all_rois(client=client)
node_fields = {}
for property, type in neuron_attributes.itertuples(index=False):
if property == "type":
node_fields[property] = parse_node_fields(property, type, neuron_types_with_wildcard)
elif property == "class":
node_fields[property] = parse_node_fields(property, type, neuron_classes_with_wildcard)
elif property == "birthtime":
node_fields[property] = parse_node_fields(property, type, neuron_birthtimes)
elif property == "n.somaSide":
node_fields[property] = parse_node_fields(property, type, neuron_somaSides)
elif property == "entryNerve":
node_fields[property] = parse_node_fields(property, type, neuron_entryNerve_with_wildcard)
elif property == "exitNerve":
node_fields[property] = parse_node_fields(property, type, neuron_exitNerve_with_wildcard)
elif property == "hemilineage":
node_fields[property] = parse_node_fields(property, type, neuron_hemilineage_with_wildcard)
elif property == "longTract":
node_fields[property] = parse_node_fields(property, type, neuron_longTract)
elif property == "modality":
node_fields[property] = parse_node_fields(property, type, neuron_modality)
elif property == "modality":
node_fields[property] = parse_node_fields(property, type, neuron_origin_with_wildcard)
elif property == "cellBodyFiber":
node_fields[property] = parse_node_fields(property, type, cell_body_fibers)
elif property == "predictedNt":
node_fields[property] = parse_node_fields(property, type, neuron_predictedNt)
elif property == "somaSide":
node_fields[property] = parse_node_fields(property, type, neuron_somaSide)
elif property == "subclass":
node_fields[property] = parse_node_fields(property, type, neuron_subclass_with_wildcard)
elif property == "systematicType":
node_fields[property] = parse_node_fields(property, type, neuron_systematicType_with_wildcard)
elif property == "target":
node_fields[property] = parse_node_fields(property, type, neuron_target_with_wildcard)
else:
if parse_node_fields(property, type):
node_fields[property] = parse_node_fields(property, type)
for roi in allRois:
if roi not in node_fields.keys():
node_fields[roi] = parse_roi_fields(roi)
return node_fields
@app.post("/fetch_edge_fields")
async def fetch_edge_fields(req: Request):
from neuprint import Client, fetch_all_rois
req = await req.json()
server = req['server']
version = req['version']
token = req['token']
client = Client(server, dataset=version, token=token)
allRois = fetch_all_rois(client=client)
edge_fields = {
"weight": {
"label": "weight",
"type": "number",
"operators": ["greater", "less", "equal"],
"valueSources": ["value"],
}
}
for roi in allRois:
edge_fields[roi] = parse_edge_fields(roi)
return edge_fields
def start():
uvicorn.run("main:app", host="127.0.0.1", port=4242, reload=True, log_level="info", app_dir="/")
if __name__ == "__main__":
start()