-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdrawFigure2a.py
54 lines (48 loc) · 1.73 KB
/
drawFigure2a.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from protocols.DirectEncoding import DirectEncoding
from Components.Distribution import zipf
from Components.Draw import draw
import math
NUMBEROFAXIS = 7 #### 9
N = 10000 #### 10000
# protocol is class, fixing epsilon
def analytical_eps_DE(protocol, epsilon, n):
vars = [] # return a list of variances
for step in range(NUMBEROFAXIS): # 9 values
d = 2**(2 + step*2)
x = protocol(d, epsilon)
x.set_n(n)
var = x.var_analytical()
vars.append(math.log10(var)) # log10(var)
return vars
# zipf distribution, similar to experiments in 14-RAPPOR
def empirical_eps_DE(protocol, epsilon, n):
vars = []
for step in range(NUMBEROFAXIS): # 9 values
d = 2**(2 + step*2)
x = protocol(d, epsilon) # init
users = zipf.zipf(1.1, d, n)
for i in range(len(users)):
x.PE(users[i])
x.aggregation() # estimate couterEsti
f = zipf.probList(1.1, d, n)
var = x.var_empirical(f, n)
vars.append(math.log10(var)) # log10(var)
return vars
'''
Need run 10 times.
Temporarily run once.
'''
# Figure 2(a)
def Comparing_empirical_and_analytical_variance_a():
varslist = [] # return a list of (a list of variances)
# Analytical DE
vars = analytical_eps_DE(DirectEncoding, 4, N)
varslist.append(vars)
# Empirical DE
vars = empirical_eps_DE(DirectEncoding, 4, N)
varslist.append(vars)
# Draw
d = [item for item in range(2, (NUMBEROFAXIS+1)*2, 2)] # 2^2, 2^4, ..., 2^18
draw.lines(d, varslist, ['Analytical DE', 'Empirical DE'], title='Comparing empirical and analytical variance', xlabel='Vary d(log2(x))', ylabel='Var(log10(y))')
if __name__ == "__main__":
Comparing_empirical_and_analytical_variance_a()