-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdrawFigure2c.py
56 lines (49 loc) · 1.71 KB
/
drawFigure2c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from protocols.DirectEncoding import DirectEncoding
from Components.Distribution import zipf
from Components.Draw import draw
import math
NUMBEROFAXIS = 10 #### 9
N = 10000 #### 10000
# fixing d, vary epsilon
## copy from drawFigure1a
def analytical_DE(protocol, d, n):
vars = [] # return a list of variances
for step in range(NUMBEROFAXIS):
epsilon = 0.5 + 0.5 * step
x = protocol(d, epsilon)
x.set_n(n)
var = x.var_analytical()
vars.append(math.log10(var)) # log10(var)
return vars
# zipf distribution, similar to experiments in 14-RAPPOR
def empirical_DE(protocol, d, n):
vars = []
for step in range(NUMBEROFAXIS): # 10 values
epsilon = 0.5 + 0.5 * step
x = protocol(d, epsilon) # init
users = zipf.zipf(1.1, d, n)
for i in range(len(users)):
x.PE(users[i])
x.aggregation() # estimate couterEsti
f = zipf.probList(1.1, d, n)
var = x.var_empirical(f, n)
vars.append(math.log10(var))
return vars
'''
Need run 10 times.
Temporarily run once.
'''
# Figure 2(c)
def Comparing_empirical_and_analytical_variance_c():
varslist = [] # return a list of (a list of variances)
# Analytical DE
vars = analytical_DE(DirectEncoding, 2**10, N)
varslist.append(vars)
# Empirical DE
vars = empirical_DE(DirectEncoding, 2**10, N)
varslist.append(vars)
# Draw
eps = [0.5+0.5*item for item in range(NUMBEROFAXIS)] # 0.5, 1, ..., 5
draw.lines(eps, varslist, ['Analytical DE', 'Empirical DE'], title='Comparing empirical and analytical variance', xlabel='Vary epsilon(log2(x))', ylabel='Var(log10(y))')
if __name__ == "__main__":
Comparing_empirical_and_analytical_variance_c()