-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
130 lines (107 loc) · 4.44 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import tqdm
import json
import copy
import math
import torch
import logging
import argparse
import numpy as np
import dataclasses
from xopen import xopen
from rouge import Rouge
import matplotlib.pyplot as plt
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
from utils.modify_llama import QH2OLlamaForCausalLM, QH2OLlamaAttention
def set_seed(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
ENABLE_Heavy_Hitter_FUNCTIONS = {
"llama": None,
"llama_qh2o": QH2OLlamaForCausalLM,
}
TAGET_MODULE = {
"llama": None,
"llama_qh2o": QH2OLlamaAttention,
}
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--input_path", type=str, default="")
parser.add_argument("--output_path", type=str, default="")
parser.add_argument("--model_name", type=str, default="")
# KV Cache Policy
parser.add_argument("--hh_size", type=float, default=0.15)
parser.add_argument("--recent_size", type=float, default=0.05)
# For quantization
parser.add_argument("--kbits", type=int, default=4)
parser.add_argument("--vbits", type=int, default=4)
parser.add_argument("--alpha", type=float, default=1.0)
parser.add_argument('--enable_qh2o_cache', action='store_true')
parser.add_argument("--seed", type=int, default=2, help="random seed for initialization")
args = parser.parse_args()
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
args.n_gpu = torch.cuda.device_count()
set_seed(args)
model_name = args.model_name
input_path = args.input_path
output_path = args.output_path
config = AutoConfig.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
if args.enable_qh2o_cache:
if args.alpha == 1:
print('Enabling Quantization H2O KV cache')
else:
print('Enabling Q-Hitter Cache')
config.hh_size = args.hh_size
config.recent_size = args.recent_size
config.kbits = args.kbits
config.vbits = args.vbits
config.alpha = args.alpha
model = ENABLE_Heavy_Hitter_FUNCTIONS['llama_qh2o'].from_pretrained(model_name, config=config)
else:
model = AutoModelForCausalLM.from_pretrained(model_name)
model.half().eval().cuda()
requests = []
with open(input_path, 'r') as f:
for line in f:
if line.strip() != '':
requests.append(json.loads(line))
results = []
rouge = Rouge()
rouge_score_list = []
with torch.no_grad():
for request in tqdm.tqdm(requests):
result = {'request': request, 'result': {}}
prompt = request['article']
label = request['summary_gt']
temperature = request['temperature']
stop = request['stop']
input_ids = tokenizer(prompt, add_special_tokens=False, return_tensors='pt').input_ids.to(model.device)
output_sequences = model.generate(
input_ids=input_ids,
max_length=request['max_tokens'] + len(input_ids[0]),
temperature=temperature,
top_p=request['top_p'],
do_sample=True,
num_return_sequences=request['n'],
return_dict_in_generate=True, output_scores=True,
)
if args.enable_qh2o_cache:
for name, m in model.named_modules():
if isinstance(m, TAGET_MODULE['llama_qh2o']):
m._clean_cache()
tokens = tokenizer.convert_ids_to_tokens(output_sequences['sequences'].squeeze(0))[len(input_ids[0]):]
logprobs = [logits.log_softmax(dim=-1).max().item() for logits in output_sequences['scores']]
top_logprobs = [{i: v for i, v in zip(tokens, logprobs)}]
generate_text = tokenizer.decode(output_sequences['sequences'].squeeze(0)[len(input_ids[0]):])
generate_text = generate_text[: generate_text.find(stop[0])]
scores = rouge.get_scores(generate_text, label)[0]
rouge_score_list.append(scores['rouge-l']['f'])
results.append(result)
print('{:.6f}'.format(np.mean(rouge_score_list)))
print('Rouge-L: {:.6f}'.format(np.mean(rouge_score_list)))
with open(output_path, 'w') as f:
for result in results:
f.write(json.dumps(result) + '\n')