-
Notifications
You must be signed in to change notification settings - Fork 6
/
demo_maxvqa.py
168 lines (122 loc) · 5.42 KB
/
demo_maxvqa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import time
import argparse
import pickle as pkl
import random
import open_clip
import numpy as np
import torch
import torch.nn as nn
import yaml
from scipy.stats import pearsonr, spearmanr
from scipy.stats import kendalltau as kendallr
from tqdm import tqdm
from dover.datasets import UnifiedFrameSampler, spatial_temporal_view_decomposition
def encode_text_prompts(prompts,device="cuda"):
text_tokens = tokenizer(prompts).to(device)
with torch.no_grad():
embedding = model.token_embedding(text_tokens)
text_features = model.encode_text(text_tokens).float()
return text_tokens, embedding, text_features
## You need to install DOVER
from dover import datasets
from dover import DOVER
import wandb
from model import TextEncoder, MaxVQA, EnhancedVisualEncoder
device = "cuda"
## initialize datasets
with open("maxvqa.yml", "r") as f:
opt = yaml.safe_load(f)
dopt = opt["data"]["val-ytugc"]["args"]
temporal_samplers = {}
for stype, sopt in dopt["sample_types"].items():
if "t_frag" not in sopt:
# resized temporal sampling for TQE in DOVER
temporal_samplers[stype] = UnifiedFrameSampler(
sopt["clip_len"], sopt["num_clips"], sopt["frame_interval"]
)
else:
# temporal sampling for AQE in DOVER
temporal_samplers[stype] = UnifiedFrameSampler(
sopt["clip_len"] // sopt["t_frag"],
sopt["t_frag"],
sopt["frame_interval"],
sopt["num_clips"],
)
## initialize clip
print(open_clip.list_pretrained())
model, _, _ = open_clip.create_model_and_transforms("RN50",pretrained="openai")
model = model.to(device)
## initialize fast-vqa encoder
fast_vqa_encoder = DOVER(**opt["model"]["args"]).to(device)
fast_vqa_encoder.load_state_dict(torch.load("../DOVER/pretrained_weights/DOVER.pth"),strict=False)
## encode initialized prompts
context = "X"
positive_descs = ["high quality", "good content", "organized composition", "vibrant color", "contrastive lighting", "consistent trajectory",
"good aesthetics",
"sharp", "in-focus", "noiseless", "clear-motion", "stable", "well-exposed",
"original", "fluent", "clear",
]
negative_descs = ["low quality", "bad content", "chaotic composition", "faded color", "gloomy lighting", "incoherent trajectory",
"bad aesthetics",
"fuzzy", "out-of-focus", "noisy", "blurry-motion", "shaky", "poorly-exposed",
"compressed", "choppy", "severely degraded",
]
pos_prompts = [ f"a {context} {desc} photo" for desc in positive_descs]
neg_prompts = [ f"a {context} {desc} photo" for desc in negative_descs]
tokenizer = open_clip.get_tokenizer("RN50")
text_tokens, embedding, text_feats = encode_text_prompts(pos_prompts + neg_prompts, device=device)
## Load model
text_encoder = TextEncoder(model)
visual_encoder = EnhancedVisualEncoder(model, fast_vqa_encoder)
maxvqa = MaxVQA(text_tokens, embedding, text_encoder, share_ctx=True).cuda()
state_dict = torch.load("maxvqa_maxwell.pt")
maxvqa.load_state_dict(state_dict)
maxvqa.initialize_inference(text_encoder)
title = """<h1 align="center">Demo of MaxVQA</h1>"""
dim_means = [0.64816874, 0.7389499, 0.72287375, 0.7463802 , 0.8296112 ,
0.7190873 , 0.6247339 , 0.54232854, 0.629289 , 0.5732389 ,
0.69551915, 0.49694163, 0.68725526, 0.60615003, 0.88730884,
0.5536831]
dim_stds = [0.16527903, 0.1164713 , 0.12123751, 0.13628706, 0.12584831,
0.11652958, 0.15417372, 0.18802027, 0.16696042, 0.15306316,
0.153056 , 0.1480174 , 0.1273537 , 0.16313092, 0.07106569,
0.1876018]
def rescale(raw_score, dim=-1):
## Not Fully Implemented Yet
x = (raw_score - dim_means[dim]) / dim_stds[dim]
return 1 / (1 + np.exp(-x))
def format_maxvqa(output):
output_ = ""
output = list(output[0])
for i, (pos, neg, score) in enumerate(zip(positive_descs, negative_descs, output)):
output_ += f"Axis {pos}<-->{neg} Score: {rescale(score, i)*100:.1f}\n"
return output_
### evaluation
import gradio as gr
mean = torch.FloatTensor([123.675, 116.28, 103.53]).reshape(-1,1,1,1)
std = torch.FloatTensor([58.395, 57.12, 57.375]).reshape(-1,1,1,1)
def inference(video):
## Your custom video preprocessing here
with torch.no_grad():
print("Path:", video)
video_data, _ = spatial_temporal_view_decomposition(
video, dopt["sample_types"], temporal_samplers,
)
try:
print(video_data["aesthetic"].shape, video_data["aesthetic"].dtype)
print(video_data["technical"].shape, video_data["technical"].dtype)
except:
pass
# Assuming that video_data is the preprocessed video from above step
data = {"aesthetic": (video_data["aesthetic"] - mean ) / std,
"technical": (video_data["technical"] - mean ) / std}
vis_feats = visual_encoder(data["aesthetic"].to(device), data["technical"].to(device))
res = maxvqa(vis_feats, text_encoder, train=False)
output = list(res.cpu().numpy()) # Modify this part if your output is not a numpy array
return format_maxvqa(output)
iface = gr.Interface(fn=inference,
inputs=gr.inputs.Video(source="upload"),
outputs="text")
gr.Markdown(title)
iface.launch(share=True)