-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtestingCheckpoints.py
493 lines (409 loc) · 13.3 KB
/
testingCheckpoints.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
import math
import pygame
import pygame.gfxdraw
import time
from NeuralNetwork import NN
from NEAT import NEAT
# initialize pygame
pygame.init()
# set up the game screen
screen = pygame.display.set_mode()
screen_width, screen_height = screen.get_size()
pygame.display.set_caption("Car Race Game")
#fonts
generation_font = pygame.font.SysFont("Arial", 40)
font = pygame.font.SysFont("Arial", 30)
# set up the clock
clock = pygame.time.Clock()
#Stop when this fitness is reached
max_fit = 1000
# define colors
black = (0, 0, 0, 255)
white = (255, 255, 255, 255)
red = (255, 0, 0, 255)
green = (0, 255, 0, 255)
blue = (0, 0, 255, 255)
# GLOBALS
track_img_path = "track.png"
running = False
caravan = []
dead_caravan = []
UP = 0
RIGHT = 1
DOWN = 3
LEFT = 2
FAIL =-1
PI = math.pi
no_parents = 2
pop_size = 100
# define Sensor class
class Sensor:
def __init__(self, car):
self.numRays = 5
self.spread = PI
self.rays = []
self.car = car
self.readings = []
self.angle = 0
def lerp(self, a, b, t):
return a+(b-a)*t
def getDistance(self, p0, p1):
self.readings.append(((p1[0] - p0[0])**2 + (p1[1] - p0[1])**2)**0.5)
def update(self):
self.rays = []
self.readings = []
for i in range(self.numRays):
self.angle = self.lerp(self.spread/2, -self.spread/2, i/((1/2) if self.numRays == 1 else (self.numRays-1))) + self.car.angle + PI
start = (self.car.x, self.car.y)
inc = 1
while True:
end = [self.car.x-math.cos(self.angle)*inc, self.car.y-math.sin(self.angle)*inc]
if end[0]<0: end[0] = 0
if end[0]>screen_width: end[0] = screen_width-5
if end[1]<0: end[1] = 0
if end[1]>screen_height: end[1] = screen_height-5
end = tuple(end)
if (screen.get_at((int(end[0]), int(end[1]))) != black) or (int(end[0]) > screen_width) or (int(end[1]) > screen_height):
break
inc += 1
self.rays.append((start, end))
self.getDistance(start, end)
self.car.dist = self.readings
def draw(self):
for i, ray in enumerate(self.rays):
pygame.draw.line(screen, green, ray[0], ray[1])
# define Car class
class Car:
def __init__(self, x, y, image):
self.start = x,y
self.x = x
self.y = y
self.image = image
self.width = image.get_width()
self.height = image.get_height()
self.speed = 5
self.acceleration = 0.1
self.max_speed = 100
self.angle = PI/2
self.rotate_speed = 1
self.max_angle = 45
self.alive = True
def update(self, direc):
if direc == UP:
self.speed += self.acceleration
if self.speed > self.max_speed:
self.speed = self.max_speed
# elif direc == DOWN:
# self.speed -= self.acceleration
# if self.speed < -self.max_speed:
# self.speed = -self.max_speed
# handle car rotation
if direc == RIGHT: self.angle += 0.05
elif direc == LEFT: self.angle -= 0.05
if self.angle >PI: self.angle -=2*PI
if self.angle <-PI: self.angle +=2*PI
# update car position
self.x += self.speed * math.cos(self.angle)
self.y += self.speed * math.sin(self.angle)
# wrap-around
if self.x < -self.width: self.x = screen_width
elif self.x > screen_width: self.x = -self.width
if self.y < -self.height: self.y = screen_height
elif self.y > screen_height: self.y = -self.height
return self
def reset(self):
# print(f'reset!{self}')
self.x, self.y = self.start
self.speed = 5
self.acceleration = 0.1
self.max_speed = 100
self.angle = PI/2
self.rotate_speed = 1
self.max_angle = 45
self.checkpoints = set()
def draw(self):
rotated_image = pygame.transform.rotate(self.image, -self.angle*180/math.pi)
screen.blit(rotated_image, (self.x - rotated_image.get_width()/2, self.y - rotated_image.get_height()/2))
return self
def get_alive(self):
return self.alive
def set_alive(self, val):
self.alive = val
def __repr__(self) -> str:
return f"Car({self.x},{self.y})"
# define Player class
class Player(Car):
def __init__(self, x, y, image):
Car.__init__(self, x, y, image)
self.speed = 0
def update(self):
# update car position
direc = FAIL
keys = pygame.key.get_pressed()
if keys[pygame.K_UP]: direc = UP
elif keys[pygame.K_DOWN]: direc = DOWN
if keys[pygame.K_RIGHT]: direc = RIGHT
elif keys[pygame.K_LEFT]: direc = LEFT
return super().update(direc)
def draw(self):
if not self.get_alive():
print("You have died")
else:
return super().draw()
def __repr__(self) -> str:
return f"You({self.x},{self.y})"
# define Computer class
class Computer(Car):
id = 0
def __init__(self, x, y, image):
self.dist = [0,0,0,0,0] # W NW N NE E
self.brain = NN([5, 6, 3])
self.start_time = time.time()
self.temp_time = self.start_time
Computer.id += 1
self.id = Computer.id
super().__init__(x, y, image)
self.sensor = Sensor(self)
self.fitness = 0
self.controls = [LEFT, UP, RIGHT]
self.checkpoints = set()
def reset(self):
print(f'reset!{self}')
super().reset()
self.fitness = 0
self.set_alive(True)
def calc_fitness(self):
# self.fitness += self.speed*(time.time()-self.temp_time)
self.fitness = len(checkpoints)
self.temp_time = time.time()
def update(self):
if not self.get_alive(): return
self.sensor.update()
direc = FAIL
self.calc_fitness()
direc = self.compute() # U R D L
super().update(direc)
def compute(self):
if not self.get_alive(): return self
outputs = self.brain.feedForward(self.brain, self.dist)
return self.controls[outputs.index(max(outputs))]
def draw(self):
if not self.get_alive(): return self
self.sensor.draw()
return super().draw()
def __repr__(self) -> str:
return f"Comp[{self.id}]({self.x},{self.y})"
# define Track class
class Track:
def __init__(self, image):
self.image = image
# self.binary_matrix = [[0]*screen_width]*screen_height
# self.distance_matrix = [[0]*screen_width]*screen_height
# self.mask = pygame.mask.from_surface(self.image)
self.checkpoints = []
self.checkpointsMade = False
# self.inc = 5
def draw(self):
screen.blit(self.image, (0,0))
if not self.checkpointsMade:
self.makeCheckpoints()
self.checkpointsMade = True
if self.checkpointsMade:
for row in self.checkpoints[::20]:
for e in range(len(row)-1)[::2]:
# pygame.draw.line(screen, red, row[e], row[e+1])
# pygame.draw.circle(screen, red, row[e], 5, 0)
# pygame.draw.circle(screen, red, row[e+1], 5, 0)
# print(abs(row[e+1][0] - row[e][0]), row[e+1][0], row[e][0])
# if abs(row[e+1][0] - row[e][0])-30 < 5:
if abs(row[e][0] - row[e+1][0]) <= 200:
# print(f"\x1b[31m{row[e], row[e+1]}\x1b[0m")
pygame.draw.line(screen, red, row[e], row[e+1])
# else:
# for f in range(abs(row[e][0] - row[e+1][0]))[::20]:
# starty = row[e][1]
# inc = 1
# ends = []
# while True:
# end = [f, starty+inc]
# if end[1]>screen_height:
# break
# end = tuple(end)
# if (screen.get_at((int(end[0]), int(end[1]))) == white) or (int(end[1]) > screen_height):
# ends.append(end)
# break
# inc += 1
# inc = 1
# while True:
# end = [f, starty-inc]
# if end[1]>screen_height:
# break
# end = tuple(end)
# if (screen.get_at((int(end[0]), int(end[1]))) == white) or (int(end[1]) > screen_height):
# ends.append(end)
# break
# inc += 1
# if ((len(ends) == 2) and (abs(ends[0][1] - ends[1][1]) <=400)):
# pygame.draw.line(screen, red, ends[0], ends[1])
# if(self.track_pixels.index(row) == 100):
# break
# temp_screen = pygame.Surface((screen_width, screen_height))
# pygame.draw.aalines(screen, red, False, pygame.math.bezier(self.track_pixels, 20), 2)
# print(f"\x1b[31m{self.track_pixels}\n\n{len(self.track_pixels)}\x1b[0m")
# pygame.gfxdraw.bezier(screen, self.track_pixels[:400], 4, red)
# print(self.track_pixels[60])
# quit()
# start = 0
# for row in range(len(self.track_pixels))[::5]:
# try:
# # print(abs(self.track_pixels[row][start][0]-self.track_pixels[row][start+30][0]))
# if(abs(self.track_pixels[row][start][0]-self.track_pixels[row][start+30][0]) <= 30):
# pygame.draw.line(screen, red, self.track_pixels[row][start], self.track_pixels[row][start+30])
# start += 30
# except IndexError:
# print(self.track_pixels[row])
# # quit(c)
# quit()
# print("DONE")
# screen.blit(temp_screen, (0,0))
# for y in range(screen_height):
# for x in range(screen_width):
# if(self.binary_matrix[y][x] == 1):
# screen.set_at((x,y), red)
def handleCheckpoints(self):
for i, car in enumerate(caravan):
point = (int(car.x + math.cos(car.angle) * car.width / 2),int(car.y + math.sin(car.angle) * car.width / 2))
if screen.get_at(point) == red:
pass
def checkCollision(self):
global caravan, dead_caravan
for i, car in enumerate(caravan):
point = (int(car.x + math.cos(car.angle) * car.width / 2),int(car.y + math.sin(car.angle) * car.width / 2))
if screen.get_at(point) == white:
car.set_alive(False)
caravan.pop(i)
dead_caravan.append(car)
# def neighbours(self, x, y, image):
# img = image
# x_1, y_1, x1, y1 = x-1, y-1, x+1, y+1
# return [ img[x_1][y], img[x_1][y1], img[x][y1], img[x1][y1], img[x1][y], img[x1][y_1], img[x][y_1], img[x_1][y_1] ]
# def transitions(self, neighbours):
# n = neighbours + neighbours[0:1]
# print(n)
# return sum( (n1, n2) == (0, 1) for n1, n2 in zip(n, n[1:]) )
def makeCheckpoints(self):
# self.pixel_array = pygame.PixelArray(self.image)
# for y in range(screen_height):
# for x in range(screen_width):
# print((x,y))
# if screen.get_at((x,y)) == black:
# self.track_pixels.append((x, y))
for y in range(screen_height):
row = []
start = False
for x in range(screen_width):
if(screen.get_at((x,y)) == black) and not start:
# self.binary_matrix[y][x] = 1
row.append((x,y))
start = True
if(screen.get_at((x,y)) != black) and start:
row.append((x,y))
start = False
# row.append((x,y))
# print(row)
self.checkpoints.append(row)
# dist_matrix = [[0 for j in range(size)] for i in range(size)]
# Compute Euclidean distance transform
# for i,j in one_coords:
# min_dist = math.inf
# for k in range(size):
# for l in range(size):
# if matrix[k][l] == 0:
# dist = math.sqrt((i-k)**2 + (j-l)**2)
# if dist < min_dist:
# min_dist = dist
# dist_matrix[i][j] = min_dist
# changing1 = changing2 = 1
# while changing1 or changing2:
# changing1 = []
# rows, columns = screen_height, screen_width
# for x in range(1, rows - 1):
# for y in range(1, columns - 1):
# P2,P3,P4,P5,P6,P7,P8,P9 = n = self.neighbours(x, y, self.binary_matrix)
# if ((self.binary_matrix[x][y] == 1) and (2 <= sum(n) <= 6) and (self.transitions(n) == 1) and (P2 * P4 * P6 == 0) and (P4 * P6 * P8 == 0)): # Condition 4
# changing1.append((x,y))
# for x, y in changing1:
# self.binary_matrix[x][y] = 0
# changing2 = []
# for x in range(1, rows - 1):
# for y in range(1, columns - 1):
# P2,P3,P4,P5,P6,P7,P8,P9 = n = self.neighbours(x, y, self.binary_matrix)
# if ((self.binary_matrix[x][y] == 1) and (2 <= sum(n) <= 6) and (self.transitions(n) == 1) and (P2 * P4 * P8 == 0) and (P2 * P6 * P8 == 0)): # Condition 4
# changing2.append((x,y))
# for x, y in changing2:
# self.binary_matrix[x][y] = 0
#Main Loop
def main():
global caravan, running, dead_caravan
neat = NEAT()
running = True
car_image = pygame.image.load("car.png")
car_image = pygame.transform.scale(car_image, (83, 30))
track_img = pygame.image.load(track_img_path)
track_img = pygame.transform.scale(track_img, (screen_width, screen_height))
# Init my cars
for i in range(pop_size):
caravan.append(Computer(90,screen_height/2,car_image))
# caravan.append(Player(90, screen_height/2, car_image))
# create track object
track = Track(track_img)
generation = 1
while running:
# event loop
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
elif event.type == pygame.KEYDOWN:
if event.key == pygame.K_ESCAPE:
running = False
# draw background and track
screen.fill(white)
track.draw()
track.checkCollision()
text = generation_font.render("Generation : " + str(generation), True, blue)
text_rect = text.get_rect()
text_rect.center = (screen_width/2, 100)
screen.blit(text, text_rect)
text = font.render("Cars : " + str(len(caravan)), True, blue)
text_rect = text.get_rect()
text_rect.center = (screen_width/2, 230)
screen.blit(text, text_rect)
if len(caravan) == 0:
parents = []
for i in range(no_parents):
car = max(dead_caravan, key=lambda x:x.fitness)
if(car.fitness >= max_fit):
running = False
break
parents.append(car)
dead_caravan.remove(car)
print(f"\x1b[32m=======BEST CAR {parents[-1]}========\x1b[0m")
print(f"\x1b[32mBest Score: {parents[-1].fitness}\x1b[0m")
caravan = neat.newPopulation(parents, dead_caravan+parents)
dead_caravan = []
generation+=1
else:
# draw cars
for car in caravan:
text = font.render(str(car.id), True, red)
text_rect = text.get_rect()
text_rect.center = (car.x, car.y-30)
screen.blit(text, text_rect)
car.update()
car.draw()
# update display
pygame.display.update()
# set frame rate
clock.tick(60)
if __name__ == '__main__':
main()