forked from HarshCasper/NeoAlgo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Lucas_Theorem.py
56 lines (54 loc) · 1.79 KB
/
Lucas_Theorem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Reference from GeeksForGeeks
'''
Lucas Theorem :
Lucas' theorem is a result about binomial coefficients modulo a prime p.
We will be given three numbers n, r and p and we need to compute value of nCr mod p.
Excample 1:
Q.) : Find the remainder when 1000C300 is divided by 13.
Sol : First we write 1000 and 300 in terms of the sum of power of 13
1000 = 5(13^2) + 11(13) + 12
300 = 1(13^2) + 10(13) + 1
Then apply Lucas Theorem:
1000C300 = (5C1) * (11C10) * (12C1)
= 5 * 11 * 12
= 5 *(-2) * (-1)
= 10
Example 2:
Input: n = 10, r = 2, p = 13
Output: 6
'''
'''defining the modulo function.'''
def Mod(n, r, p):
arr = [0] * (n + 1);
#The array arr is going to store the
# last row of the triangle
# at the end. And last entry
# of last row is nCr
arr[0] = 1;
for i in range(1, (n + 1)):
j = min(i, r);
while(j > 0):
arr[j] = (arr[j] + arr[j - 1]) % p;
j -= 1;
return arr[r];
###################################################
'''
calculate the last digit of n and r for base p,
then recur
the remaining digits
'''
def Lucas(n, r, p):
if (r == 0):
return 1;
nth = int(n % p);
rth = int(r % p);
return (Lucas(int(n / p), int(r / p), p) * Mod(nth, rth, p)) % p;
########################################################################
n = int(input("Enter The Value of n : "))
r = int(input("Enter The Value of r : "))
p = int(input("Enter The Value of p : "))
print("Value of nCr % p is",Lucas(n, r, p));
'''
Time Complexity : O(P^2)
Space Complexity : O(P)
'''