forked from HarshCasper/NeoAlgo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathackermann_function.py
41 lines (38 loc) · 1.47 KB
/
ackermann_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# ACKERMANN FUNCTION
# Definition: A function of two parameters whose value grows very fast.
# Formal Definition:
# A(0, j)=j+1 for j ≥ 0
# A(i, 0)=A(i-1, 1) for i > 0
# A(i, j)=A(i-1, A(i, j-1)) for i, j > 0
# In 1928, Wilhelm Ackermann observed that A(x,y,z),
# the z-fold iterated exponentiation of x with y,
# is a recursive function that is not primitive recursive.
# A(x,y,z) was simplified to a function
# of 2 variables by Rózsa Péter in 1935.
# Raphael M. Robinson simplified the initial condition in 1948.
def Ackermann_func(m, n):
history = [[0 for i in range(n + 1)] for j in range(m + 1)]
for i in range(m + 1):
for j in range(n + 1):
if i == 0:
history[i][j] = j + 1
elif j == 0:
history[i][j] = history[i-1][1]
else:
a = i - 1
b = history[i][j-1]
if a == 0:
result = b + 1
elif b <= n:
result = history[i-1][history[i][j-1]]
else:
result = (b-n)*(a) + history[a][n]
history[i][j] = result
return history[m][n]
m, n = input("Enter non-negative values of m and n: ").split()
m, n = int(m), int(n)
print("A(%u, %u) = %u" % (m, n, Ackermann_func(m, n)))
# SAMPLE INPUT: Enter non-negative values of m and n: 2 2
# SAMPLE OUTPUT: A(2,2) = 7
# Time complexity: O( M * N )
# Space complexity: O( M * N )