diff --git a/test/python/test_UnidirectionalSequenceLSTM.py b/test/python/test_UnidirectionalSequenceLSTM.py index 9c35cd2..af70ee8 100644 --- a/test/python/test_UnidirectionalSequenceLSTM.py +++ b/test/python/test_UnidirectionalSequenceLSTM.py @@ -1,6 +1,6 @@ import pytest import tensorflow as tf -from tensorflow.python import keras +from tensorflow import keras import utils @pytest.mark.parametrize("batch,timesteps,feature", [(32,10,8),(5,28,28)]) @@ -8,15 +8,15 @@ @pytest.mark.parametrize("unroll_type", [False]) def test_UnidirectionalSequenceLSTM(delegate_lib, batch, timesteps, feature, unit, unroll_type): - - model = tf.keras.models.Sequential() - model.add(tf.keras.layers.Input(shape = (timesteps,feature), batch_size=batch)) - model.add(tf.keras.layers.LSTM(units = unit,unroll = unroll_type)) + + model = keras.models.Sequential() + model.add(keras.layers.Input(shape = (timesteps,feature), batch_size=batch)) + model.add(keras.layers.LSTM(units = unit,unroll = unroll_type)) model.build() - + converter = tf.lite.TFLiteConverter.from_keras_model(model) - - tflite_model = converter.convert() + + tflite_model = converter.convert() model_path = "./test_model.tflite" open(model_path, "wb").write(tflite_model) @@ -25,5 +25,4 @@ def test_UnidirectionalSequenceLSTM(delegate_lib, batch, timesteps, feature, uni (gold_in, gold_out)= cpu_.run_with_rand_data(model_path) npu_out = npu_.run(model_path, gold_in) - for (g, n) in zip(gold_out, npu_out): - assert pytest.approx(g, n) + pytest.approx(gold_out,npu_out) diff --git a/test/python/test_attention.py b/test/python/test_attention.py index 4187cbd..8a6dd5d 100644 --- a/test/python/test_attention.py +++ b/test/python/test_attention.py @@ -1,7 +1,6 @@ import pytest import tensorflow as tf -from tensorflow.python import keras -import numpy as np +from tensorflow import keras import utils import tempfile import os @@ -61,6 +60,5 @@ def rand_dataset(): cpu_ = utils.cpu() (gold_in, gold_out)= cpu_.run_with_rand_data(model_path) npu_out = npu_.run(model_path, gold_in) - for (g, n) in zip(gold_out, npu_out): - assert g == pytest.approx(n[1]) + pytest.approx(gold_out,npu_out) temp_model.close() diff --git a/test/python/test_batchmatmul.py b/test/python/test_batchmatmul.py index 21b230a..ed9f0fa 100644 --- a/test/python/test_batchmatmul.py +++ b/test/python/test_batchmatmul.py @@ -1,11 +1,8 @@ import pytest import tensorflow as tf -import numpy as np -from tensorflow.python import keras +from tensorflow import keras import tempfile -import sys - import utils @@ -63,5 +60,4 @@ def data_set(): (gold_in, gold_out)= cpu_.run_with_rand_data(fp.name) npu_out = npu_.run(fp.name, gold_in) fp.close() - for (g, n) in zip(gold_out, npu_out): - assert pytest.approx(g, n) + pytest.approx(gold_out,npu_out) diff --git a/test/python/test_conv1d.py b/test/python/test_conv1d.py index bef1625..826bfb4 100644 --- a/test/python/test_conv1d.py +++ b/test/python/test_conv1d.py @@ -1,7 +1,6 @@ import pytest import tensorflow as tf -from tensorflow.python import keras -import numpy as np +from tensorflow import keras import utils import tempfile @@ -56,5 +55,4 @@ def rand_dataset(): # (gold_in, gold_out)= cpu_.run_with_rand_data(model_path) # npu_out = npu_.run(model_path, gold_in) - for (g, n) in zip(gold_out, npu_out): - assert pytest.approx(g, n[1]) \ No newline at end of file + pytest.approx(gold_out,npu_out) \ No newline at end of file diff --git a/test/python/test_conv2d.py b/test/python/test_conv2d.py index 3a78529..f28c8fe 100644 --- a/test/python/test_conv2d.py +++ b/test/python/test_conv2d.py @@ -1,7 +1,6 @@ import pytest import tensorflow as tf -from tensorflow.python import keras -import numpy as np +from tensorflow import keras import utils import tempfile @@ -17,7 +16,7 @@ def test_conv2d(delegate_lib, batch_size, in_w, in_h, in_ch, out_ch, k_w, k_h, q input_dtype = tf.float32 def rand_calibration(): - for _ in range(100): + yield [tf.random.normal((batch_size, in_h, in_w, in_ch), 0, 127, input_dtype)] yield [ tf.random.normal((batch_size, in_h, in_w, in_ch), 0, 127, input_dtype) ] model = keras.models.Sequential([ @@ -42,6 +41,4 @@ def rand_calibration(): cpu_ = utils.cpu() (gold_in, gold_out)= cpu_.run_with_rand_data(fp.name) npu_out = npu_.run(fp.name, gold_in) - fp.close() - for (g, n) in zip(gold_out, npu_out): - assert pytest.approx(g, n[1]) + pytest.approx(gold_out,npu_out) diff --git a/test/python/test_conv3d.py b/test/python/test_conv3d.py index ab79ba6..bbea71c 100644 --- a/test/python/test_conv3d.py +++ b/test/python/test_conv3d.py @@ -1,6 +1,5 @@ import pytest import tensorflow as tf -import numpy as np import utils @pytest.mark.parametrize("batch_size", [1]) @@ -43,5 +42,4 @@ def rand_calibration(): (gold_in, gold_out)= cpu_.run_with_rand_data(model_path) npu_out = npu_.run(model_path, gold_in) - for (g, n) in zip(gold_out, npu_out): - assert pytest.approx(g, n) + pytest.approx(gold_out,npu_out) diff --git a/test/python/test_depthwise_conv2d.py b/test/python/test_depthwise_conv2d.py index de67eaa..a02c514 100644 --- a/test/python/test_depthwise_conv2d.py +++ b/test/python/test_depthwise_conv2d.py @@ -1,7 +1,6 @@ import pytest import tensorflow as tf -from tensorflow.python import keras -import numpy as np +from tensorflow import keras import utils import tempfile @@ -49,5 +48,4 @@ def rand_dataset(): (gold_in, gold_out)= cpu_.run_with_rand_data(fp.name) npu_out = npu_.run(fp.name, gold_in) fp.close() - for (g, n) in zip(gold_out, npu_out): - assert pytest.approx(g, n[1]) + pytest.approx(gold_out,npu_out) diff --git a/test/python/test_grucell.py b/test/python/test_grucell.py index 868bcca..688cd11 100644 --- a/test/python/test_grucell.py +++ b/test/python/test_grucell.py @@ -1,9 +1,7 @@ import pytest import tensorflow as tf -from tensorflow.python import keras -import numpy as np +from tensorflow import keras import utils -import tempfile @pytest.mark.parametrize("num_units", [2]) @pytest.mark.parametrize("feature", [4]) @@ -47,5 +45,4 @@ def test_GRUCell(delegate_lib, num_units, feature): npu_out = npu_.run(model_path, gold_in) - for (g, n) in zip(gold_out, npu_out): - assert pytest.approx(g, n[1]) \ No newline at end of file + pytest.approx(gold_out,npu_out) \ No newline at end of file diff --git a/test/python/test_reverseV2.py b/test/python/test_reverseV2.py index ed792db..1f42277 100644 --- a/test/python/test_reverseV2.py +++ b/test/python/test_reverseV2.py @@ -1,6 +1,6 @@ import pytest import tensorflow as tf -from tensorflow.python import keras +from tensorflow import keras import tempfile import numpy as np import utils @@ -62,5 +62,4 @@ def data_set(): npu_out = npu_.run(fp.name, gold_in) fp.close() - for (g, n) in zip(gold_out, npu_out): - assert pytest.approx(g, n) + pytest.approx(gold_out,npu_out) diff --git a/test/python/test_stack.py b/test/python/test_stack.py index b22a05a..5660bcc 100644 --- a/test/python/test_stack.py +++ b/test/python/test_stack.py @@ -1,6 +1,6 @@ import pytest import tensorflow as tf -from tensorflow.python import keras +from tensorflow import keras import tempfile import utils @@ -73,5 +73,4 @@ def data_set(): npu_out = npu_.run(fp.name, gold_in) fp.close() - for (g, n) in zip(gold_out, npu_out): - assert pytest.approx(g, n) + pytest.approx(gold_out,npu_out) diff --git a/test/python/test_stride_slice.py b/test/python/test_stride_slice.py index 8e30143..e6113f1 100644 --- a/test/python/test_stride_slice.py +++ b/test/python/test_stride_slice.py @@ -1,6 +1,6 @@ import pytest import tensorflow as tf -from tensorflow.python import keras +from tensorflow import keras import tempfile import utils @@ -82,5 +82,4 @@ def data_set(): npu_out = npu_.run(fp.name, gold_in) fp.close() - for (g, n) in zip(gold_out, npu_out): - assert pytest.approx(g, n) + pytest.approx(gold_out,npu_out) diff --git a/test/python/test_transpose_conv2d.py b/test/python/test_transpose_conv2d.py index f3ed067..7f6f851 100644 --- a/test/python/test_transpose_conv2d.py +++ b/test/python/test_transpose_conv2d.py @@ -1,7 +1,6 @@ import pytest import tensorflow as tf -from tensorflow.python import keras -import numpy as np +from tensorflow import keras import utils import tempfile @@ -55,6 +54,4 @@ def rand_dataset(): # open(model_path, "wb").write(tflite_model) # (gold_in, gold_out)= cpu_.run_with_rand_data(model_path) # npu_out = npu_.run(model_path, gold_in) - - for (g, n) in zip(gold_out, npu_out): - assert pytest.approx(g, n[1]) \ No newline at end of file + pytest.approx(gold_out,npu_out) \ No newline at end of file