-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrafficSignCnn_v3.py
46 lines (39 loc) · 2.12 KB
/
trafficSignCnn_v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from keras.layers import BatchNormalization
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Dense, Dropout, Flatten
from keras.models import Sequential
hidden_num_units = 2048
hidden_num_units1 = 1024
hidden_num_units2 = 128
pool_size = (2, 2)
# architecture by Sanket Doshi
# can be found at https://towardsdatascience.com/traffic-sign-detection-using-convolutional-neural-network-660fb32fe90e
class TrafficSignNet_v3:
@staticmethod
def build(width, height, depth, classes):
input_shape = (width, height, depth)
model = Sequential([Conv2D(16, (3, 3), activation='relu', input_shape=input_shape, padding='same'),
BatchNormalization(), Conv2D(16, (3, 3), activation='relu', padding='same'),
BatchNormalization(),
MaxPooling2D(pool_size=pool_size),
Dropout(0.2),
Conv2D(32, (3, 3), activation='relu', padding='same'),
BatchNormalization(),
Conv2D(32, (3, 3), activation='relu', padding='same'),
BatchNormalization(),
MaxPooling2D(pool_size=pool_size),
Dropout(0.2),
Conv2D(64, (3, 3), activation='relu', padding='same'),
BatchNormalization(),
Conv2D(64, (3, 3), activation='relu', padding='same'),
BatchNormalization(),
MaxPooling2D(pool_size=pool_size),
Dropout(0.2), Flatten(), Dense(units=hidden_num_units, activation='relu'),
Dropout(0.3),
Dense(units=hidden_num_units1, activation='relu'),
Dropout(0.3),
Dense(units=hidden_num_units2, activation='relu'),
Dropout(0.3),
Dense(units=classes, input_dim=hidden_num_units, activation='sigmoid'),
])
return model