-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_parser.py
executable file
·152 lines (131 loc) · 5.2 KB
/
data_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import matplotlib.pyplot as plt
import numpy as np
import os
import cv2
import csv
from tqdm import tqdm
from IPython import display
#(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()
#load y_train and y_test
train_acl_lbl = []
train_abnormal_lbl = []
train_meniscus_lbl = []
valid_acl_lbl = []
valid_abnormal_lbl = []
valid_meniscus_lbl = []
i = 0
csvs = ["train-acl.csv", "train-abnormal.csv","train-meniscus.csv","valid-acl.csv", "valid-abnormal.csv","valid-meniscus.csv"]
for c in csvs:
with open('MRNet-v1.0/'+ c, newline='') as csvfile:
read = csv.reader(csvfile, delimiter=' ', quotechar='|')
if i == 0:
for row in read:
train_acl_lbl.append(', '.join(row)[5])
i += 1
elif i == 1:
for row in read:
train_abnormal_lbl.append(', '.join(row)[5])
i+=1
elif i == 2:
for row in read:
train_meniscus_lbl.append(', '.join(row)[5])
i+=1
elif i == 3:
for row in read:
valid_acl_lbl.append(', '.join(row)[5])
i+=1
elif i == 4:
for row in read:
valid_abnormal_lbl.append(', '.join(row)[5])
i+=1
elif i == 5:
for row in read:
valid_meniscus_lbl.append(', '.join(row)[5])
i+=1
def getTheLabels(a,b,c):
labels = [0] * len(a)
for i in tqdm(range(len(labels))):
labels[i] = int(str(a[i]) + str(b[i]) + str(c[i]),2)
return np.array(labels)
#Encoding all labels to be a number from (0-7) (Abnormal,ACL,Meniscus)
#GAN doesn't look like using labels
train_label = getTheLabels(train_abnormal_lbl,train_acl_lbl,train_meniscus_lbl)
valid_label = getTheLabels(valid_abnormal_lbl,valid_acl_lbl,valid_meniscus_lbl)
del(train_abnormal_lbl)
del(train_acl_lbl)
del(train_meniscus_lbl)
del(valid_abnormal_lbl)
del(valid_acl_lbl)
del(valid_meniscus_lbl)
WIDTH = 256
HEIGHT = 256
#load x_train
train_axial = np.zeros([38778,WIDTH,HEIGHT], dtype='uint8')
train_coronal = np.zeros([33649,WIDTH,HEIGHT], dtype='uint8')
train_sagittal = np.zeros([34370,WIDTH,HEIGHT],dtype='uint8')
train_axial_lbl = np.zeros([38778], dtype='uint8')
train_coronal_lbl = np.zeros([33649], dtype='uint8')
train_sagittal_lbl = np.zeros([34370],dtype='uint8')
train_axial_idx = 0
train_sagittal_idx = 0
train_coronal_idx = 0
dir_train="C:/admin/masters/AI/gan/MRNet-v1.0/train"
def to_rgb(img,wid,hei):# -> Resizing image to fit as (WIDTH,HEIGHT)
img = cv2.resize(img, (wid,hei), interpolation = cv2.INTER_AREA)
return img
def getTheDataLabelPerView_(obj,save_in,idx):
global train_axial_idx , train_sagittal_idx , train_coronal_idx
for j in tqdm(range(len(obj))): # 0 -> s (For every view)
if (save_in == 'train_axial'):
train_axial[train_axial_idx] = to_rgb(obj[j],WIDTH,HEIGHT) # -> save each image as (WIDTH,HEIGHT)
train_axial_lbl[train_axial_idx] = train_label[idx] # -> Giving all images the same label as patient.
train_axial_idx += 1
elif(save_in == 'train_coronal'):
train_coronal[train_coronal_idx] = to_rgb(obj[j],WIDTH,HEIGHT) # -> save each image as (WIDTH,HEIGHT)
train_coronal_lbl[train_coronal_idx] = train_label[idx] # -> Giving all images the same label as patient.
train_coronal_idx += 1
else:
train_sagittal[train_sagittal_idx] = to_rgb(obj[j],WIDTH,HEIGHT) # -> save each image as (WIDTH,HEIGHT)
train_sagittal_lbl[train_sagittal_idx] = train_label[idx] # -> Giving all images the same label as patient.
train_sagittal_idx += 1
i = 0
for folder in sorted(os.listdir(dir_train)):
idx = 0
if folder == ".DS_Store" or folder == 'DG1__DS_DIR_HDR':
continue;
type_dir = os.path.join(dir_train,folder)
os.chdir(type_dir)
for img in sorted(os.listdir(type_dir)):
if img == ".DS_Store" or img == 'DG1__DS_DIR_HDR':
continue
img_dir=os.path.join(type_dir,img)
if i == 0:
getTheDataLabelPerView_(np.load(img_dir).astype('uint8'),'train_axial',idx)
elif i == 1:
getTheDataLabelPerView_(np.load(img_dir).astype('uint8'),'train_coronal',idx)
elif i == 2:
getTheDataLabelPerView_(np.load(img_dir).astype('uint8'),'train_sagittal',idx)
idx += 1
i+=1
#load y_train
valid_ = []
dir_valid="C:/admin/masters/AI/gan/MRNet-v1.0/valid"
i = 0
for folder in sorted(os.listdir(dir_valid)):
if folder == ".DS_Store":
continue;
type_dir=os.path.join(dir_valid,folder)
os.chdir(type_dir)
for img in sorted(os.listdir(type_dir)):
if img == ".DS_Store":
continue;
img_dir=os.path.join(type_dir,img)
if i==0:
valid_.append(np.load(img_dir).astype('uint8'))
elif i==1:
valid_.append(np.load(img_dir).astype('uint8'))
i+=1
# dataset in desired format is available now
print('dataset shape: ', train_axial.shape)
plt.imshow(train_axial[0, :, :], 'gray')
plt.show()