-
Notifications
You must be signed in to change notification settings - Fork 1
/
pytorch_DDP.py
248 lines (209 loc) · 11.1 KB
/
pytorch_DDP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import torch
from torch.cuda import max_memory_allocated
import torchvision
import argparse
import yaml
from torch.utils.data import DataLoader
from utils import ZeroOneNormalize, CosineAnnealingLRWarmup, evaluate_accuracy_and_loss
from matplotlib import pyplot as plt
import os
from transformers import get_cosine_schedule_with_warmup
import time
import random
import numpy as np
from torch.utils.data.distributed import DistributedSampler
'''
### **4卡 DDP(Distributed Data Parallel)**
[DISTRIBUTED COMMUNICATION PACKAGE - TORCH.DISTRIBUTED](https://pytorch.org/docs/stable/distributed.html)
[DISTRIBUTED DATA PARALLEL](https://pytorch.org/docs/stable/notes/ddp.html)
[[原创][深度][PyTorch] DDP系列第一篇:入门教程](https://zhuanlan.zhihu.com/p/178402798)
[[原创][深度][PyTorch] DDP系列第二篇:实现原理与源代码解析](https://zhuanlan.zhihu.com/p/187610959)
[[原创][深度][PyTorch] DDP系列第三篇:实战与技巧](https://zhuanlan.zhihu.com/p/250471767)
* 代码文件:pytorch_DDP.py / pytorch_torchrun_DDP.py
* 单卡显存占用:3.12 G
* 单卡GPU使用率峰值:99%
* 训练时长(5 epoch):560 s
* 训练结果:准确率85%左右
'''
os.environ["TORCH_HOME"] = "./pretrained_models"
# 创建命令行解析对象
parser = argparse.ArgumentParser()
parser.add_argument("--cfg", default="./config/classifier_cifar10.yaml", type=str, help="data file path")
parser.add_argument("--local_rank", type=int, default=-1)
args = parser.parse_args()
def set_seed(seed):
'''设置随机数种子'''
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# print(args.local_rank)
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
# backend:指定分布式后端的名称,例如 ‘nccl’、‘gloo’ 或 ‘mpi’。
# NCCL是NVIDIA集合通信库(NVIDIA Collective Communications Library)的简称,是用于加速多GPU之间通信的库,能够实现集合通信和点对点通信。
# Open MPI项目是一个开源MPI(消息传递接口 )实现,由学术,研究和行业合作伙伴联盟开发和维护。
# Gloo是facebook开源的一套集体通信库,他提供了对机器学习中有用的一些集合通信算法如:barrier, broadcast, allreduce
# init_method:初始化方法的 URL 或文件路径。默认为 None,表示使用默认的初始化方法。
# timeout:初始化过程的超时时间,默认为 1800 秒。
# world_size:参与分布式训练的总进程数。默认为 -1,表示从环境变量中自动获取。
# rank:当前进程的排名。默认为 -1,表示从环境变量中自动获取。
# store:用于存储进程组信息的存储对象。默认为 None,表示使用默认存储。
# group_name:进程组的名称,默认为 ‘default’。
# **kwargs:其他可选参数,根据不同的分布式后端而定。
# torch.distributed.init_process_group(backend="nccl", rank=args.local_rank)
torch.distributed.init_process_group(backend="nccl")
world_size = torch.distributed.get_world_size()
set_seed(args.local_rank + 1)
cfg_path = args.cfg
with open(cfg_path, "r", encoding="utf8") as f:
cfg_dict = yaml.safe_load(f)
print(cfg_dict)
# 显卡设备
visible_device = cfg_dict.get("device")
# 小批量
batchsize = cfg_dict.get("batch_size")
# worker数量
num_workers = cfg_dict.get("num_workers")
# epoch
num_epoches = cfg_dict.get("epoch")
# 学习率
lr = cfg_dict.get("lr")
# 权重衰减
weight_decay = cfg_dict.get("weight_decay")
# 存储目录
save_dir = cfg_dict.get("save_dir")
train_transforms_list = [
torchvision.transforms.PILToTensor(),
torchvision.transforms.Resize(size=(256, 256), antialias=True).cuda(),
torchvision.transforms.RandomCrop(size=(224, 224)),
ZeroOneNormalize(),
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]
val_transforms_list = [
torchvision.transforms.PILToTensor(),
torchvision.transforms.Resize(size=(224, 224), antialias=True).cuda(),
ZeroOneNormalize(),
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]
train_transforms = torchvision.transforms.Compose(train_transforms_list)
val_transforms = torchvision.transforms.Compose(val_transforms_list)
if args.local_rank not in [-1, 0]:
# 分布式任务汇聚点
torch.distributed.barrier()
cifar10_train = torchvision.datasets.CIFAR10(root="./data", train=True, transform=train_transforms, download=True)
cifar10_test = torchvision.datasets.CIFAR10(root="./data", train=False, transform=val_transforms, download=True)
if args.local_rank == 0:
# 分布式任务汇聚点
torch.distributed.barrier()
cifar10_train_sampler = DistributedSampler(cifar10_train, shuffle=True, rank=args.local_rank, num_replicas=world_size)
cifar10_test_sampler = DistributedSampler(cifar10_test, shuffle=False, rank=args.local_rank, num_replicas=world_size)
train_data_loader = DataLoader(cifar10_train, batch_size=batchsize // len(visible_device), drop_last=True,
shuffle=False,
num_workers=num_workers,
sampler=cifar10_train_sampler)
test_data_loader = DataLoader(cifar10_test, batch_size=batchsize // len(visible_device), drop_last=False,
shuffle=False,
num_workers=num_workers,
sampler=cifar10_test_sampler)
classes = cifar10_train.classes
print("train: {}, test: {}, classes: {}".format(len(train_data_loader), len(test_data_loader), len(classes)))
model = torchvision.models.resnet50(weights=torchvision.models.ResNet50_Weights.IMAGENET1K_V1).cuda()
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank)
optimizer = torch.optim.SGD(model.parameters(), lr=lr, weight_decay=weight_decay)
loss = torch.nn.CrossEntropyLoss()
lr_scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=10,
num_training_steps=len(train_data_loader) * num_epoches)
if __name__ == '__main__':
train_acc = []
train_loss = []
val_acc = []
val_loss = []
lr_decay_list = []
memory = 0
file_name = os.path.splitext(os.path.basename(__file__))[0]
best_acc = 0.0
best_model = ""
start_time = time.time()
for epoch in range(num_epoches):
train_loss_sum = 0.0
train_acc_sum = 0.0
n = 0
model.train()
# set_epoch是为了让不同的epoch采样出不同的样本顺序,同时,保证同一个人epoch下,各个进程之间的相同随机数种子
# 这样就可以根据rank编号和world_size使不同进程获取到不重复的数据
cifar10_train_sampler.set_epoch(epoch)
for batch_idx, (X, y) in enumerate(train_data_loader):
lr_decay_list.append(optimizer.state_dict()["param_groups"][0]["lr"])
# print(lr_decay_list)
X = X.cuda()
y = y.cuda()
y_pred = model(X)
l = loss(y_pred, y).sum()
# print("local rank: {}, {}, {}, {}".format(args.local_rank, X.shape, y.shape, y_pred.shape))
optimizer.zero_grad()
l.backward()
optimizer.step()
train_loss_sum += l.item()
train_acc_sum += (y_pred.argmax(dim=1) == y).sum().item()
n += y.shape[0]
batch_acc = (y_pred.argmax(dim=1) == y).float().mean()
# 跨分布式汇总,同步梯度
torch.distributed.all_reduce(batch_acc, op=torch.distributed.ReduceOp.AVG)
torch.distributed.all_reduce(l, op=torch.distributed.ReduceOp.AVG)
# 收集所有数据块并分发到所有rank上。不计算梯度
# X_gather = torch.zeros_like(X).repeat((world_size, 1, 1, 1))
# y_gather = torch.zeros_like(y).repeat(world_size)
# y_pred_gather = torch.zeros_like(y_pred).repeat((world_size, 1))
# torch.distributed.all_gather_into_tensor(X_gather, X)
# torch.distributed.all_gather_into_tensor(y_gather, y)
# torch.distributed.all_gather_into_tensor(y_pred_gather, y_pred)
# print("X_gather: {}, y_gather: {}, y_pred_gather: {}".format(X_gather.shape, y_gather.shape,
# y_pred_gather.shape))
if batch_idx % 20 == 0 and args.local_rank == 0:
print("epoch: {}, iter: {}, iter loss: {:.4f}, iter acc: {:.4f}".format(epoch, batch_idx, l.item(),
batch_acc.item()))
lr_scheduler.step()
model.eval()
v_acc, v_loss = evaluate_accuracy_and_loss(test_data_loader, model, loss, accelerator=None, is_half=False,
local_rank=args.local_rank,
world_size=world_size)
train_acc.append(train_acc_sum / n)
train_loss.append(train_loss_sum / n)
val_acc.append(v_acc)
val_loss.append(v_loss)
# 分布式任务汇聚点
torch.distributed.barrier()
if args.local_rank == 0:
if v_acc > best_acc:
if os.path.exists(os.path.join(save_dir, file_name)) is False:
os.makedirs(os.path.join(save_dir, file_name))
best_acc = v_acc
best_model = os.path.join(os.path.join(save_dir, file_name),
"{}-{}-{}.pth".format(file_name, epoch, best_acc))
torch.save(model.module.state_dict(), best_model)
print("epoch: {}, train acc: {:.4f}, train loss: {:.4f}, val acc: {:.4f}, val loss: {:.4f}".format(
epoch, train_acc[-1], train_loss[-1], val_acc[-1], val_loss[-1]))
# PyTorch 提供了 memory_allocated() 和 max_memory_allocated() 用于监视 tensors 占用的内存;
# memory_cached() 和 max_memory_cached() 用于监视缓存分配器所管理的内存.
memory = max_memory_allocated()
print(f'memory allocated: {memory / 1e9:.2f}G')
end_time = time.time()
duration = int(end_time - start_time)
print("duration time: {} s".format(duration))
if args.local_rank == 0:
fig, axes = plt.subplots(1, 3)
axes[0].plot(list(range(1, num_epoches + 1)), train_loss, color="r", label="train loss")
axes[0].plot(list(range(1, num_epoches + 1)), val_loss, color="b", label="validate loss")
axes[0].legend()
axes[0].set_title("Loss")
axes[1].plot(list(range(1, num_epoches + 1)), train_acc, color="r", label="train acc")
axes[1].plot(list(range(1, num_epoches + 1)), val_acc, color="b", label="validate acc")
axes[1].legend()
axes[1].set_title("Accuracy")
axes[2].plot(list(range(1, len(lr_decay_list) + 1)), lr_decay_list, color="r", label="lr")
axes[2].legend()
axes[2].set_title("Learning Rate")
plt.suptitle('memory: {:.2f} G , duration: {} s'.format(memory / 1e9, duration))
plt.savefig(os.path.join(save_dir, "{}.jpg".format(file_name)))
plt.show()