-
Notifications
You must be signed in to change notification settings - Fork 1
/
pytorch_DP.py
181 lines (157 loc) · 6.87 KB
/
pytorch_DP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import time
import torch
from torch.cuda import max_memory_allocated
import torchvision
import argparse
import yaml
from torch.utils.data import DataLoader
from utils import ZeroOneNormalize, CosineAnnealingLRWarmup, evaluate_accuracy_and_loss
from matplotlib import pyplot as plt
import os
from transformers import get_cosine_schedule_with_warmup
'''
### **4卡 DP(Data Parallel)**
* 代码文件:pytorch_DP.py
* 单卡显存占用:3.08 G
* 单卡GPU使用率峰值:99%
* 训练时长(5 epoch):942 s
* 训练结果:准确率85%左右
'''
# 定义torch目录
os.environ["TORCH_HOME"] = "./pretrained_models"
# 读取cifar10数据集配置
parser = argparse.ArgumentParser()
parser.add_argument("--cfg", default="./config/classifier_cifar10.yaml", type=str, help="data file path")
args = parser.parse_args()
cfg_path = args.cfg
# load配置
with open(cfg_path, "r", encoding="utf8") as f:
cfg_dict = yaml.safe_load(f)
print(cfg_dict)
# 显卡设备
visible_device = cfg_dict.get("device")
# 小批量
batchsize = cfg_dict.get("batch_size")
# worker数量
num_workers = cfg_dict.get("num_workers")
# epoch
num_epoches = cfg_dict.get("epoch")
# 学习率
lr = cfg_dict.get("lr")
# 权重衰减
weight_decay = cfg_dict.get("weight_decay")
# 存储目录
save_dir = cfg_dict.get("save_dir")
# 训练集
train_transforms_list = [
torchvision.transforms.PILToTensor(),
torchvision.transforms.Resize(size=(256, 256), antialias=True).cuda(),
torchvision.transforms.RandomCrop(size=(224, 224)),
ZeroOneNormalize(),
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]
# 验证集
val_transforms_list = [
torchvision.transforms.PILToTensor(),
torchvision.transforms.Resize(size=(224, 224), antialias=True).cuda(),
ZeroOneNormalize(),
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]
train_transforms = torchvision.transforms.Compose(train_transforms_list)
val_transforms = torchvision.transforms.Compose(val_transforms_list)
# 下载CIFAR10训练数据集
cifar10_train = torchvision.datasets.CIFAR10(root="./data", train=True, transform=train_transforms, download=True)
# 下载CIFAR10测试数据集
cifar10_test = torchvision.datasets.CIFAR10(root="./data", train=False, transform=val_transforms, download=True)
train_data_loader = DataLoader(cifar10_train, batch_size=batchsize, drop_last=True, shuffle=True,
num_workers=num_workers)
test_data_loader = DataLoader(cifar10_test, batch_size=batchsize, drop_last=False, shuffle=False,
num_workers=num_workers)
classes = cifar10_train.classes
print("train: {}, test: {}, classes: {}".format(len(train_data_loader), len(test_data_loader), len(classes)))
# 初始化网络(resnet50)使用IMAGENET1K_V1初始化权重,存入GPU
model = torchvision.models.resnet50(weights=torchvision.models.ResNet50_Weights.IMAGENET1K_V1).cuda()
model = torch.nn.DataParallel(model, device_ids=visible_device)
optimizer = torch.optim.SGD(model.parameters(), lr=lr, weight_decay=weight_decay)
loss = torch.nn.CrossEntropyLoss()
lr_scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=10,
num_training_steps=len(train_data_loader) * num_epoches)
if __name__ == '__main__':
train_acc = []
train_loss = []
val_acc = []
val_loss = []
lr_decay_list = []
memory = 0
file_name = os.path.splitext(os.path.basename(__file__))[0]
best_acc = 0.0
best_model = ""
start_time = time.time()
# 开始训练
for epoch in range(num_epoches):
train_loss_sum = 0.0
train_acc_sum = 0.0
n = 0
model.train()
for batch_idx, (X, y) in enumerate(train_data_loader):
lr_decay_list.append(optimizer.state_dict()["param_groups"][0]["lr"])
# print(lr_decay_list)
# 在GPU上完成损失计算
X = X.cuda()
y = y.cuda()
y_pred = model(X)
l = loss(y_pred, y).sum()
optimizer.zero_grad()
l.backward()
optimizer.step()
# 训练损失累计
train_loss_sum += l.item()
# 训练成功累计
train_acc_sum += (y_pred.argmax(dim=1) == y).sum().item()
# 真实值累加
n += y.shape[0]
if batch_idx % 20 == 0:
print("epoch: {}, iter: {}, iter loss: {:.4f}, iter acc: {:.4f}".format(epoch, batch_idx, l.item(), (
y_pred.argmax(dim=1) == y).float().mean().item()))
# 更新学习率
lr_scheduler.step()
# 评估模式,验证模型
model.eval()
v_acc, v_loss = evaluate_accuracy_and_loss(test_data_loader, model, loss, accelerator=None)
train_acc.append(train_acc_sum / n)
train_loss.append(train_loss_sum / n)
val_acc.append(v_acc)
val_loss.append(v_loss)
# 如果验证结果比最好结果还好,则更新最好结果,保存模型
if v_acc > best_acc:
if os.path.exists(os.path.join(save_dir, file_name)) is False:
os.makedirs(os.path.join(save_dir, file_name))
best_acc = v_acc
best_model = os.path.join(os.path.join(save_dir, file_name),
"{}-{}-{}.pth".format(file_name, epoch, best_acc))
torch.save(model.module.state_dict(), best_model)
print("epoch: {}, train acc: {:.4f}, train loss: {:.4f}, val acc: {:.4f}, val loss: {:.4f}".format(
epoch, train_acc[-1], train_loss[-1], val_acc[-1], val_loss[-1]))
# PyTorch 提供了 memory_allocated() 和 max_memory_allocated() 用于监视 tensors 占用的内存;
# memory_cached() 和 max_memory_cached() 用于监视缓存分配器所管理的内存.
memory = max_memory_allocated()
print(f'memory allocated: {memory / 1e9:.2f}G')
end_time = time.time()
duration = int(end_time - start_time)
print("duration time: {} s".format(duration))
fig, axes = plt.subplots(1, 3)
axes[0].plot(list(range(1, num_epoches + 1)), train_loss, color="r", label="train loss")
axes[0].plot(list(range(1, num_epoches + 1)), val_loss, color="b", label="validate loss")
axes[0].legend()
axes[0].set_title("Loss")
axes[1].plot(list(range(1, num_epoches + 1)), train_acc, color="r", label="train acc")
axes[1].plot(list(range(1, num_epoches + 1)), val_acc, color="b", label="validate acc")
axes[1].legend()
axes[1].set_title("Accuracy")
axes[2].plot(list(range(1, len(lr_decay_list) + 1)), lr_decay_list, color="r", label="lr")
axes[2].legend()
axes[2].set_title("Learning Rate")
# 存储运行结果图
plt.suptitle('memory: {:.2f} G , duration: {} s'.format(memory / 1e9, duration))
plt.savefig(os.path.join(save_dir, "{}.jpg".format(file_name)))
plt.show()