-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathtrain.py
executable file
·759 lines (650 loc) · 35.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: train.py
import argparse
import itertools
import numpy as np
import os
import cv2
import six
import shutil
assert six.PY3, "FasterRCNN requires Python 3!"
import tensorflow as tf
import tqdm
import tensorpack.utils.viz as tpviz
from tensorpack import *
from tensorpack.tfutils import optimizer
from tensorpack.tfutils.common import get_tf_version_tuple, get_tensors_by_names
from tensorpack.tfutils.summary import add_moving_summary
from tensorpack.tfutils.varreplace import freeze_variables
import model_frcnn
import model_mrcnn
from basemodel import image_preprocess, resnet_c4_backbone, resnet_conv5, resnet_fpn_backbone, backbone_scope
from dataset import DetectionDataset
from config import finalize_configs, config as cfg
from data import get_all_anchors, get_all_anchors_fpn, get_train_dataflow
from eval_utils import EvalCallback
from model_box import RPNAnchors, clip_boxes, crop_and_resize, roi_align
from model_cascade import CascadeRCNNHead, CascadeRCNNHeadWithHardExamples
from model_fpn import fpn_model, generate_fpn_proposals, multilevel_roi_align, multilevel_rpn_losses
from model_frcnn import BoxProposals, FastRCNNHead, fastrcnn_outputs, fastrcnn_predictions, sample_fast_rcnn_targets
from model_mrcnn import maskrcnn_loss, maskrcnn_upXconv_head
from model_rpn import generate_rpn_proposals, rpn_head, rpn_losses
try:
import horovod.tensorflow as hvd
except ImportError:
pass
class DetectionModel(ModelDesc):
def preprocess(self, image):
image = tf.expand_dims(image, 0)
image = image_preprocess(image, bgr=True)
return tf.transpose(image, [0, 3, 1, 2])
@property
def training(self):
return get_current_tower_context().is_training
def optimizer(self):
lr = tf.get_variable('learning_rate', initializer=0.003, trainable=False)
tf.summary.scalar('learning_rate-summary', lr)
# The learning rate in the config is set for 8 GPUs, and we use trainers with average=False.
lr = lr / 8.
opt = tf.train.MomentumOptimizer(lr, 0.9)
if cfg.TRAIN.NUM_GPUS < 8:
opt = optimizer.AccumGradOptimizer(opt, 8 // cfg.TRAIN.NUM_GPUS)
return opt
def get_inference_tensor_names(self):
"""
Returns two lists of tensor names to be used to create an inference callable.
Returns:
[str]: input names
[str]: output names
"""
if cfg.MODE_THIRD_STAGE:
out = ['output/boxes', 'output/scores', 'third_stage_features_out', 'ff_gt_tracklet_scores',
'sparse_tracklet_scores', 'tracklet_score_indices']
else:
out = ['output/boxes', 'output/scores', 'output/labels']
if cfg.MODE_MASK:
out.append('output/masks')
if cfg.EXTRACT_GT_FEATURES:
return ['image', 'roi_boxes'], ['boxes_for_extraction', 'features_for_extraction']
else:
return ['image'], out
def build_graph(self, *inputs):
inputs = dict(zip(self.input_names, inputs))
image = self.preprocess(inputs['image']) # 1CHW
features = self.backbone(image)
anchor_inputs = {k: v for k, v in inputs.items() if k.startswith('anchor_')}
if cfg.EXTRACT_GT_FEATURES:
anchor_inputs["roi_boxes"] = inputs["roi_boxes"]
proposals, rpn_losses = self.rpn(image, features, anchor_inputs) # inputs?
targets = [inputs[k] for k in ['gt_boxes', 'gt_labels', 'gt_masks'] if k in inputs]
head_losses = self.roi_heads(image, features, proposals, targets)
if self.training:
wd_cost = regularize_cost(
'.*/W', l2_regularizer(cfg.TRAIN.WEIGHT_DECAY), name='wd_cost')
total_cost = tf.add_n(
rpn_losses + head_losses + [wd_cost], 'total_cost')
add_moving_summary(total_cost, wd_cost)
return total_cost
class ResNetC4Model(DetectionModel):
def inputs(self):
ret = [
tf.placeholder(tf.float32, (None, None, 3), 'image'),
tf.placeholder(tf.int32, (None, None, cfg.RPN.NUM_ANCHOR), 'anchor_labels'),
tf.placeholder(tf.float32, (None, None, cfg.RPN.NUM_ANCHOR, 4), 'anchor_boxes'),
tf.placeholder(tf.float32, (None, 4), 'gt_boxes'),
tf.placeholder(tf.int64, (None,), 'gt_labels')] # all > 0
if cfg.MODE_MASK:
ret.append(
tf.placeholder(tf.uint8, (None, None, None), 'gt_masks')
) # NR_GT x height x width
return ret
def backbone(self, image):
return [resnet_c4_backbone(image, cfg.BACKBONE.RESNET_NUM_BLOCKS[:3])]
def rpn(self, image, features, inputs):
featuremap = features[0]
rpn_label_logits, rpn_box_logits = rpn_head('rpn', featuremap, cfg.RPN.HEAD_DIM, cfg.RPN.NUM_ANCHOR)
anchors = RPNAnchors(get_all_anchors(), inputs['anchor_labels'], inputs['anchor_boxes'])
anchors = anchors.narrow_to(featuremap)
image_shape2d = tf.shape(image)[2:] # h,w
pred_boxes_decoded = anchors.decode_logits(rpn_box_logits) # fHxfWxNAx4, floatbox
proposal_boxes, proposal_scores = generate_rpn_proposals(
tf.reshape(pred_boxes_decoded, [-1, 4]),
tf.reshape(rpn_label_logits, [-1]),
image_shape2d,
cfg.RPN.TRAIN_PRE_NMS_TOPK if self.training else cfg.RPN.TEST_PRE_NMS_TOPK,
cfg.RPN.TRAIN_POST_NMS_TOPK if self.training else cfg.RPN.TEST_POST_NMS_TOPK)
if self.training:
losses = rpn_losses(
anchors.gt_labels, anchors.encoded_gt_boxes(), rpn_label_logits, rpn_box_logits)
else:
losses = []
return BoxProposals(proposal_boxes), losses
def roi_heads(self, image, features, proposals, targets):
image_shape2d = tf.shape(image)[2:] # h,w
featuremap = features[0]
gt_boxes, gt_labels, *_ = targets
if self.training:
# sample proposal boxes in training
proposals = sample_fast_rcnn_targets(proposals.boxes, gt_boxes, gt_labels)
# The boxes to be used to crop RoIs.
# Use all proposal boxes in inference
boxes_on_featuremap = proposals.boxes * (1.0 / cfg.RPN.ANCHOR_STRIDE)
roi_resized = roi_align(featuremap, boxes_on_featuremap, 14)
feature_fastrcnn = resnet_conv5(roi_resized, cfg.BACKBONE.RESNET_NUM_BLOCKS[-1]) # nxcx7x7
# Keep C5 feature to be shared with mask branch
feature_gap = GlobalAvgPooling('gap', feature_fastrcnn, data_format='channels_first')
fastrcnn_label_logits, fastrcnn_box_logits = fastrcnn_outputs('fastrcnn', feature_gap, cfg.DATA.NUM_CLASS)
fastrcnn_head = FastRCNNHead(proposals, fastrcnn_box_logits, fastrcnn_label_logits, gt_boxes,
tf.constant(cfg.FRCNN.BBOX_REG_WEIGHTS, dtype=tf.float32))
if self.training:
all_losses = fastrcnn_head.losses()
if cfg.MODE_MASK:
gt_masks = targets[2]
# maskrcnn loss
# In training, mask branch shares the same C5 feature.
fg_feature = tf.gather(feature_fastrcnn, proposals.fg_inds())
mask_logits = maskrcnn_upXconv_head(
'maskrcnn', fg_feature, cfg.DATA.NUM_CATEGORY, num_convs=0) # #fg x #cat x 14x14
target_masks_for_fg = crop_and_resize(
tf.expand_dims(gt_masks, 1),
proposals.fg_boxes(),
proposals.fg_inds_wrt_gt, 14,
pad_border=False) # nfg x 1x14x14
target_masks_for_fg = tf.squeeze(target_masks_for_fg, 1, 'sampled_fg_mask_targets')
all_losses.append(maskrcnn_loss(mask_logits, proposals.fg_labels(), target_masks_for_fg))
return all_losses
else:
decoded_boxes = fastrcnn_head.decoded_output_boxes()
decoded_boxes = clip_boxes(decoded_boxes, image_shape2d, name='fastrcnn_all_boxes')
label_scores = fastrcnn_head.output_scores(name='fastrcnn_all_scores')
final_boxes, final_scores, final_labels = fastrcnn_predictions(
decoded_boxes, label_scores, name_scope='output')
if cfg.MODE_MASK:
roi_resized = roi_align(featuremap, final_boxes * (1.0 / cfg.RPN.ANCHOR_STRIDE), 14)
feature_maskrcnn = resnet_conv5(roi_resized, cfg.BACKBONE.RESNET_NUM_BLOCKS[-1])
mask_logits = maskrcnn_upXconv_head(
'maskrcnn', feature_maskrcnn, cfg.DATA.NUM_CATEGORY, 0) # #result x #cat x 14x14
indices = tf.stack([tf.range(tf.size(final_labels)), tf.cast(final_labels, tf.int32) - 1], axis=1)
final_mask_logits = tf.gather_nd(mask_logits, indices) # #resultx14x14
tf.sigmoid(final_mask_logits, name='output/masks')
return []
class ResNetFPNModel(DetectionModel):
def inputs(self):
ret = [
tf.placeholder(tf.float32, (None, None, 3), 'image')]
num_anchors = len(cfg.RPN.ANCHOR_RATIOS)
for k in range(len(cfg.FPN.ANCHOR_STRIDES)):
ret.extend([
tf.placeholder(tf.int32, (None, None, num_anchors),
'anchor_labels_lvl{}'.format(k + 2)),
tf.placeholder(tf.float32, (None, None, num_anchors, 4),
'anchor_boxes_lvl{}'.format(k + 2))])
ret.extend([
tf.placeholder(tf.float32, (None, 4), 'gt_boxes'),
tf.placeholder(tf.int64, (None,), 'gt_labels')]) # all > 0
if cfg.MODE_MASK:
ret.append(
tf.placeholder(tf.uint8, (None, None, None), 'gt_masks')
) # NR_GT x height x width
if cfg.EXTRACT_GT_FEATURES:
ret.append(tf.placeholder(tf.float32, (None, 4,), 'roi_boxes'))
return ret
def slice_feature_and_anchors(self, p23456, anchors):
for i, stride in enumerate(cfg.FPN.ANCHOR_STRIDES):
with tf.name_scope('FPN_slice_lvl{}'.format(i)):
anchors[i] = anchors[i].narrow_to(p23456[i])
def backbone(self, image):
c2345 = resnet_fpn_backbone(image, cfg.BACKBONE.RESNET_NUM_BLOCKS)
p23456 = fpn_model('fpn', c2345)
return p23456
def rpn(self, image, features, inputs):
if cfg.EXTRACT_GT_FEATURES:
boxes = inputs['roi_boxes']
return BoxProposals(boxes), tf.constant(0, dtype=tf.float32)
assert len(cfg.RPN.ANCHOR_SIZES) == len(cfg.FPN.ANCHOR_STRIDES)
image_shape2d = tf.shape(image)[2:] # h,w
all_anchors_fpn = get_all_anchors_fpn()
multilevel_anchors = [RPNAnchors(
all_anchors_fpn[i],
inputs['anchor_labels_lvl{}'.format(i + 2)],
inputs['anchor_boxes_lvl{}'.format(i + 2)]) for i in range(len(all_anchors_fpn))]
self.slice_feature_and_anchors(features, multilevel_anchors)
# Multi-Level RPN Proposals
rpn_outputs = [rpn_head('rpn', pi, cfg.FPN.NUM_CHANNEL, len(cfg.RPN.ANCHOR_RATIOS))
for pi in features]
multilevel_label_logits = [k[0] for k in rpn_outputs]
multilevel_box_logits = [k[1] for k in rpn_outputs]
multilevel_pred_boxes = [anchor.decode_logits(logits)
for anchor, logits in zip(multilevel_anchors, multilevel_box_logits)]
proposal_boxes, proposal_scores = generate_fpn_proposals(
multilevel_pred_boxes, multilevel_label_logits, image_shape2d)
if self.training:
losses = multilevel_rpn_losses(
multilevel_anchors, multilevel_label_logits, multilevel_box_logits)
else:
losses = []
return BoxProposals(proposal_boxes), losses
def roi_heads(self, image, features, proposals, targets):
image_shape2d = tf.shape(image)[2:] # h,w
assert len(features) == 5, "Features have to be P23456!"
gt_boxes, gt_labels, *_ = targets
if self.training:
proposals = sample_fast_rcnn_targets(proposals.boxes, gt_boxes, gt_labels)
fastrcnn_head_func = getattr(model_frcnn, cfg.FPN.FRCNN_HEAD_FUNC)
if not cfg.FPN.CASCADE:
roi_feature_fastrcnn = multilevel_roi_align(features[:4], proposals.boxes, 7)
head_feature = fastrcnn_head_func('fastrcnn', roi_feature_fastrcnn)
fastrcnn_label_logits, fastrcnn_box_logits = fastrcnn_outputs(
'fastrcnn/outputs', head_feature, cfg.DATA.NUM_CLASS)
fastrcnn_head = FastRCNNHead(proposals, fastrcnn_box_logits, fastrcnn_label_logits,
gt_boxes, tf.constant(cfg.FRCNN.BBOX_REG_WEIGHTS, dtype=tf.float32))
else:
def roi_func(boxes):
return multilevel_roi_align(features[:4], boxes, 7)
fastrcnn_head = CascadeRCNNHead(
proposals, roi_func, fastrcnn_head_func,
(gt_boxes, gt_labels), image_shape2d, cfg.DATA.NUM_CLASS)
if cfg.EXTRACT_GT_FEATURES:
roi_feature_fastrcnn = multilevel_roi_align(features[:4], proposals.boxes, 7)
tf.identity(roi_feature_fastrcnn, "rpn/feature")
if self.training:
all_losses = fastrcnn_head.losses()
if cfg.MODE_MASK:
gt_masks = targets[2]
# maskrcnn loss
roi_feature_maskrcnn = multilevel_roi_align(
features[:4], proposals.fg_boxes(), 14,
name_scope='multilevel_roi_align_mask')
maskrcnn_head_func = getattr(model_mrcnn, cfg.FPN.MRCNN_HEAD_FUNC)
mask_logits = maskrcnn_head_func(
'maskrcnn', roi_feature_maskrcnn, cfg.DATA.NUM_CATEGORY) # #fg x #cat x 28 x 28
target_masks_for_fg = crop_and_resize(
tf.expand_dims(gt_masks, 1),
proposals.fg_boxes(),
proposals.fg_inds_wrt_gt, 28,
pad_border=False) # fg x 1x28x28
target_masks_for_fg = tf.squeeze(target_masks_for_fg, 1, 'sampled_fg_mask_targets')
all_losses.append(maskrcnn_loss(mask_logits, proposals.fg_labels(), target_masks_for_fg))
return all_losses
else:
decoded_boxes = fastrcnn_head.decoded_output_boxes()
decoded_boxes = clip_boxes(decoded_boxes, image_shape2d, name='fastrcnn_all_boxes')
label_scores = fastrcnn_head.output_scores(name='fastrcnn_all_scores')
final_boxes, final_scores, final_labels = fastrcnn_predictions(
decoded_boxes, label_scores, name_scope='output')
if cfg.MODE_MASK:
# Cascade inference needs roi transform with refined boxes.
roi_feature_maskrcnn = multilevel_roi_align(features[:4], final_boxes, 14)
maskrcnn_head_func = getattr(model_mrcnn, cfg.FPN.MRCNN_HEAD_FUNC)
mask_logits = maskrcnn_head_func(
'maskrcnn', roi_feature_maskrcnn, cfg.DATA.NUM_CATEGORY) # #fg x #cat x 28 x 28
indices = tf.stack([tf.range(tf.size(final_labels)), tf.cast(final_labels, tf.int32) - 1], axis=1)
final_mask_logits = tf.gather_nd(mask_logits, indices) # #resultx28x28
tf.sigmoid(final_mask_logits, name='output/masks')
return []
class ResNetFPNTrackModel(ResNetFPNModel):
def inputs(self):
ret = super().inputs()
if cfg.USE_PRECOMPUTED_REF_FEATURES:
ret.append(tf.placeholder(tf.float32, (256, 7, 7), 'ref_features'))
else:
ret.append(tf.placeholder(tf.float32, (None, None, 3), 'ref_image'))
ret.append(tf.placeholder(tf.float32, (4,), 'ref_box'))
if cfg.MODE_THIRD_STAGE:
ret.append(tf.placeholder(tf.float32, (256, 7, 7), 'ff_gt_tracklet_feat'))
ret.append(tf.placeholder(tf.float32, (None, 256, 7, 7), 'active_tracklets_feats'))
ret.append(tf.placeholder(tf.float32, (None, 4), 'active_tracklets_boxes'))
ret.append(tf.placeholder(tf.float32, (), 'tracklet_distance_threshold'))
if cfg.MODE_HARD_MINING:
ret.append(tf.placeholder(tf.float32, (None, 3, 256, 7, 7), 'hard_negative_features'))
if cfg.MODE_IF_HARD_MINING_THEN_ALSO_POSITIVES:
ret.append(tf.placeholder(tf.float32, (None, 3, 256, 7, 7), 'hard_positive_features'))
ret.append(tf.placeholder(tf.float32, (None, 3), 'hard_positive_ious'))
ret.append(tf.placeholder(tf.float32, (None, 4), 'hard_positive_gt_boxes'))
ret.append(tf.placeholder(tf.float32, (None, 3, 4), 'hard_positive_jitter_boxes'))
if cfg.EXTRACT_GT_FEATURES:
ret.append(tf.placeholder(tf.float32, (None, 4,), 'roi_boxes'))
return ret
def backbone(self, image):
c2345 = resnet_fpn_backbone(image, cfg.BACKBONE.RESNET_NUM_BLOCKS)
with backbone_scope(freeze=cfg.BACKBONE.FREEZE_AT > 3):
p23456 = fpn_model('fpn', c2345)
return p23456, c2345
def rpn(self, image, features, inputs):
if cfg.EXTRACT_GT_FEATURES:
boxes = inputs['roi_boxes']
return BoxProposals(boxes), tf.constant(0, dtype=tf.float32)
if cfg.BACKBONE.FREEZE_AT > 3:
with freeze_variables(stop_gradient=False, skip_collection=True):
return super().rpn(image, features, inputs)
else:
return super().rpn(image, features, inputs)
def roi_heads(self, image, ref_features, ref_box, features, proposals, targets, hard_negative_features=None,
hard_positive_features=None, hard_positive_ious=None, hard_positive_gt_boxes=None,
hard_positive_jitter_boxes=None, precomputed_ref_features=None):
image_shape2d = tf.shape(image)[2:] # h,w
assert len(features) == 5, "Features have to be P23456!"
gt_boxes, gt_labels, *_ = targets
if self.training:
proposals = sample_fast_rcnn_targets(proposals.boxes, gt_boxes, gt_labels)
fastrcnn_head_func = getattr(model_frcnn, cfg.FPN.FRCNN_HEAD_FUNC)
if precomputed_ref_features is None:
roi_aligned_ref_features = multilevel_roi_align(ref_features[:4], ref_box[tf.newaxis], 7)
else:
roi_aligned_ref_features = precomputed_ref_features[tf.newaxis]
if cfg.MODE_SHARED_CONV_REDUCE:
scope = tf.get_variable_scope()
else:
scope = ""
assert cfg.FPN.CASCADE
def roi_func(boxes, already_aligned_features=None):
if already_aligned_features is None:
aligned_features = multilevel_roi_align(features[:4], boxes, 7)
else:
# for hard example mining
aligned_features = already_aligned_features
tiled = tf.tile(roi_aligned_ref_features, [tf.shape(aligned_features)[0], 1, 1, 1])
concat_features = tf.concat((tiled, aligned_features), axis=1)
with argscope(Conv2D, data_format='channels_first',
kernel_initializer=tf.variance_scaling_initializer(
scale=2.0, mode='fan_out',
distribution='untruncated_normal' if get_tf_version_tuple() >= (1, 12) else 'normal')):
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
reduced_features = Conv2D('conv_reduce', concat_features, 256, 1, activation=None)
return reduced_features
if cfg.MODE_HARD_MINING and self.training:
fastrcnn_head = CascadeRCNNHeadWithHardExamples(
proposals, roi_func, fastrcnn_head_func,
(gt_boxes, gt_labels), image_shape2d, cfg.DATA.NUM_CLASS, hard_negative_features,
hard_positive_features, cfg.HARD_NEGATIVE_LOSS_SCALING_FACTOR,
cfg.HARD_POSITIVE_LOSS_SCALING_FACTOR, hard_positive_ious, hard_positive_gt_boxes,
hard_positive_jitter_boxes)
else:
fastrcnn_head = CascadeRCNNHead(
proposals, roi_func, fastrcnn_head_func,
(gt_boxes, gt_labels), image_shape2d, cfg.DATA.NUM_CLASS)
if cfg.EXTRACT_GT_FEATURES:
# get boxes and features for each of the three cascade stages!
b0 = proposals.boxes
b1, b2, _ = fastrcnn_head._cascade_boxes
f0 = multilevel_roi_align(features[:4], b0, 7)
f1 = multilevel_roi_align(features[:4], b1, 7)
f2 = multilevel_roi_align(features[:4], b2, 7)
tf.concat([b0, b1, b2], axis=0, name="boxes_for_extraction")
tf.concat([f0, f1, f2], axis=0, name="features_for_extraction")
if self.training:
all_losses = fastrcnn_head.losses()
if cfg.MODE_MASK:
gt_masks = targets[2]
# maskrcnn loss
roi_feature_maskrcnn = multilevel_roi_align(
features[:4], proposals.fg_boxes(), 14,
name_scope='multilevel_roi_align_mask')
maskrcnn_head_func = getattr(model_mrcnn, cfg.FPN.MRCNN_HEAD_FUNC)
mask_logits = maskrcnn_head_func(
'maskrcnn', roi_feature_maskrcnn, cfg.DATA.NUM_CATEGORY) # #fg x #cat x 28 x 28
target_masks_for_fg = crop_and_resize(
tf.expand_dims(gt_masks, 1),
proposals.fg_boxes(),
proposals.fg_inds_wrt_gt, 28,
pad_border=False) # fg x 1x28x28
target_masks_for_fg = tf.squeeze(target_masks_for_fg, 1, 'sampled_fg_mask_targets')
all_losses.append(maskrcnn_loss(mask_logits, proposals.fg_labels(), target_masks_for_fg))
if cfg.MEASURE_IOU_DURING_TRAINING:
decoded_boxes = fastrcnn_head.decoded_output_boxes()
decoded_boxes = clip_boxes(decoded_boxes, image_shape2d, name='fastrcnn_all_boxes')
label_scores = fastrcnn_head.output_scores(name='fastrcnn_all_scores')
final_boxes, final_scores, final_labels = fastrcnn_predictions(
decoded_boxes, label_scores, name_scope='output_train')
# if predictions are empty, this might break...
# to prevent, stack dummy box
boxes_for_iou = tf.concat([final_boxes[:1], tf.constant([[0.0, 0.0, 1.0, 1.0]],
dtype=tf.float32)], axis=0)
from examples.FasterRCNN.utils.box_ops import pairwise_iou
iou_at_1 = tf.identity(pairwise_iou(gt_boxes[:1], boxes_for_iou)[0, 0], name="train_iou_at_1")
add_moving_summary(iou_at_1)
return all_losses
else:
decoded_boxes = fastrcnn_head.decoded_output_boxes()
decoded_boxes = clip_boxes(decoded_boxes, image_shape2d, name='fastrcnn_all_boxes')
label_scores = fastrcnn_head.output_scores(name='fastrcnn_all_scores')
final_boxes, final_scores, final_labels = fastrcnn_predictions(
decoded_boxes, label_scores, name_scope='output')
if cfg.MODE_MASK:
# Cascade inference needs roi transform with refined boxes.
roi_feature_maskrcnn = multilevel_roi_align(features[:4], final_boxes, 14)
maskrcnn_head_func = getattr(model_mrcnn, cfg.FPN.MRCNN_HEAD_FUNC)
mask_logits = maskrcnn_head_func(
'maskrcnn', roi_feature_maskrcnn, cfg.DATA.NUM_CATEGORY) # #fg x #cat x 28 x 28
indices = tf.stack([tf.range(tf.size(final_labels)), tf.cast(final_labels, tf.int32) - 1], axis=1)
final_mask_logits = tf.gather_nd(mask_logits, indices) # #resultx28x28
tf.sigmoid(final_mask_logits, name='output/masks')
return []
def build_graph(self, *inputs):
inputs = dict(zip(self.input_names, inputs))
image = self.preprocess(inputs['image']) # 1CHW
fpn_features, backbone_features = self.backbone(image)
if cfg.USE_PRECOMPUTED_REF_FEATURES:
ref_features = None
ref_box = None
else:
ref_image = self.preprocess(inputs['ref_image']) # 1CHW
ref_box = inputs['ref_box']
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
ref_features, _ = self.backbone(ref_image)
anchor_inputs = {k: v for k, v in inputs.items() if k.startswith('anchor_')}
if cfg.EXTRACT_GT_FEATURES:
anchor_inputs["roi_boxes"] = inputs["roi_boxes"]
proposals, rpn_losses = self.rpn(image, fpn_features, anchor_inputs) # inputs?
second_stage_features = fpn_features
targets = [inputs[k] for k in ['gt_boxes', 'gt_labels', 'gt_masks'] if k in inputs]
hard_negative_features = None
hard_positive_features = None
hard_positive_ious = None
hard_positive_gt_boxes = None
hard_positive_jitter_boxes = None
if cfg.MODE_HARD_MINING:
hard_negative_features = inputs['hard_negative_features']
if cfg.MODE_IF_HARD_MINING_THEN_ALSO_POSITIVES:
hard_positive_features = inputs['hard_positive_features']
hard_positive_ious = inputs['hard_positive_ious']
hard_positive_gt_boxes = inputs['hard_positive_gt_boxes']
hard_positive_jitter_boxes = inputs['hard_positive_jitter_boxes']
precomputed_ref_features = None
if cfg.USE_PRECOMPUTED_REF_FEATURES:
precomputed_ref_features = inputs['ref_features']
# Extend proposals by previous frame detections
if not self.training and cfg.MODE_THIRD_STAGE and cfg.EXTEND_PROPOSALS_BY_ACTIVE_TRACKLETS:
proposal_boxes = proposals.boxes
tracklet_boxes = inputs['active_tracklets_boxes']
concat_boxes = tf.concat([proposal_boxes, tracklet_boxes], axis=0)
proposals = BoxProposals(concat_boxes)
head_losses = self.roi_heads(image, ref_features, ref_box, second_stage_features, proposals, targets,
hard_negative_features, hard_positive_features, hard_positive_ious,
hard_positive_gt_boxes, hard_positive_jitter_boxes,
precomputed_ref_features=precomputed_ref_features)
if cfg.MODE_THIRD_STAGE:
self._run_third_stage(inputs, second_stage_features, tf.shape(image)[2:4])
if self.training:
wd_cost = regularize_cost(
'.*/W', l2_regularizer(cfg.TRAIN.WEIGHT_DECAY), name='wd_cost')
total_cost = tf.add_n(
rpn_losses + head_losses + [wd_cost], 'total_cost')
add_moving_summary(total_cost, wd_cost)
return total_cost
def _run_third_stage(self, inputs, second_stage_features, image_hw):
boxes, scores = get_tensors_by_names(['output/boxes', 'output/scores'])
# let's fix (as in finalize) the boxes, so we can roi align only one time
aligned_features_curr = multilevel_roi_align(second_stage_features[:4], boxes, 7)
# these also need to be extracted!
aligned_features_curr = tf.identity(aligned_features_curr, name='third_stage_features_out')
ff_gt_tracklet_scores, _ = self._score_for_third_stage(ref_feats=inputs['ff_gt_tracklet_feat'][tf.newaxis],
det_feats=aligned_features_curr)
tf.identity(ff_gt_tracklet_scores, name='ff_gt_tracklet_scores')
sparse_tracklet_scores, tracklet_score_indices = self._score_for_third_stage(
ref_feats=inputs['active_tracklets_feats'], det_feats=aligned_features_curr,
dense=False, ref_boxes=inputs['active_tracklets_boxes'], det_boxes=boxes, image_hw=image_hw,
tracklet_distance_threshold=inputs['tracklet_distance_threshold'])
tf.identity(sparse_tracklet_scores, name='sparse_tracklet_scores')
tf.identity(tracklet_score_indices, name='tracklet_score_indices')
def _score_for_third_stage(self, ref_feats, det_feats, dense=True, ref_boxes=None, det_boxes=None, image_hw=None,
tracklet_distance_threshold=0.08):
# build all pairs
n_refs = tf.shape(ref_feats)[0]
n_dets = tf.shape(det_feats)[0]
active_tracklets_tiled = tf.tile(ref_feats[:, tf.newaxis], multiples=[1, n_dets, 1, 1, 1])
dets_tiled = tf.tile(det_feats[tf.newaxis], multiples=[n_refs, 1, 1, 1, 1])
concated = tf.concat([active_tracklets_tiled, dets_tiled], axis=2)
if not dense:
# use boxes to prune the connectivity
assert ref_boxes is not None
assert det_boxes is not None
assert image_hw is not None
def xyxy_to_cxcywh(boxes_xyxy):
wh = boxes_xyxy[:, 2:] - boxes_xyxy[:, :2]
c = boxes_xyxy[:, :2] + wh / 2
boxes_cwh = tf.concat((c, wh), axis=1)
return boxes_cwh
active_tracklets_boxes_cxcywh = xyxy_to_cxcywh(ref_boxes)
boxes_cxcywh = xyxy_to_cxcywh(det_boxes)
# normalize by image size
h = image_hw[0]
w = image_hw[1]
norm = tf.cast(tf.stack([w, h, w, h], axis=0), tf.float32)
diffs = tf.abs(active_tracklets_boxes_cxcywh[:, tf.newaxis] - boxes_cxcywh[tf.newaxis]) / norm[
tf.newaxis, tf.newaxis]
# use distances of boxes, first frame scores ("scores") to prune
thresholds = tf.stack([tracklet_distance_threshold] * 4, axis=0)
keep_mask = tf.reduce_all(diffs < thresholds, axis=2)
indices = tf.where(keep_mask)
flattened = tf.boolean_mask(concated, keep_mask)
else:
indices = None
flattened = tf.reshape(
concated, [tf.shape(concated)[0] * tf.shape(concated)[1]] + [int(x) for x in concated.shape[2:]])
fastrcnn_head_func = getattr(model_frcnn, cfg.FPN.FRCNN_HEAD_FUNC)
if cfg.MODE_SHARED_CONV_REDUCE:
scope = tf.get_variable_scope()
else:
scope = ""
all_posteriors = []
# do this for every cascade stage
for idx in range(3):
with tf.variable_scope('cascade_rcnn_stage{}'.format(idx + 1), reuse=True):
with argscope(Conv2D, data_format='channels_first'):
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
reduced_features = Conv2D('conv_reduce', flattened, 256, 1, activation=None)
head_feats = fastrcnn_head_func('head', reduced_features)
with tf.variable_scope('outputs_new', reuse=True):
classification = FullyConnected('class', head_feats, 2)
posteriors = tf.nn.softmax(classification)
all_posteriors.append(posteriors)
posteriors = (all_posteriors[0] + all_posteriors[1] + all_posteriors[2]) / tf.constant(3.0, dtype=tf.float32)
scores = posteriors[:, 1]
return scores, indices
def get_inference_tensor_names(self):
inp, out = super().get_inference_tensor_names()
if cfg.USE_PRECOMPUTED_REF_FEATURES:
inp.append('ref_features')
else:
inp.append('ref_image')
inp.append('ref_box')
if cfg.MODE_THIRD_STAGE:
inp.append('ff_gt_tracklet_feat')
inp.append('active_tracklets_feats')
inp.append('active_tracklets_boxes')
inp.append('tracklet_distance_threshold')
return inp, out
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--load', help='load a model for evaluation or training. Can overwrite BACKBONE.WEIGHTS')
parser.add_argument('--logdir', help='log directory', default='train_log/siamrcnn')
parser.add_argument('--config', help="A list of KEY=VALUE to overwrite those defined in config.py",
nargs='+')
if get_tf_version_tuple() < (1, 6):
# https://github.com/tensorflow/tensorflow/issues/14657
logger.warn("TF<1.6 has a bug which may lead to crash in FasterRCNN if you're unlucky.")
args = parser.parse_args()
if args.config:
cfg.update_args(args.config)
MODEL = ResNetFPNTrackModel()
DetectionDataset() # initialize the config with information from our dataset
is_horovod = cfg.TRAINER == 'horovod'
if is_horovod:
hvd.init()
logger.info("Horovod Rank={}, Size={}".format(hvd.rank(), hvd.size()))
if not is_horovod or hvd.rank() == 0:
# keep the old log folder if already existing! (before it would just delete it)
logger.set_logger_dir(args.logdir, 'k')
# logger.set_logger_dir(args.logdir, 'd')
finalize_configs(is_training=True)
stepnum = cfg.TRAIN.STEPS_PER_EPOCH
# warmup is step based, lr is epoch based
init_lr = cfg.TRAIN.WARMUP_INIT_LR * min(8. / cfg.TRAIN.NUM_GPUS, 1.)
warmup_schedule = [(0, init_lr), (cfg.TRAIN.WARMUP, cfg.TRAIN.BASE_LR)]
warmup_end_epoch = cfg.TRAIN.WARMUP * 1. / stepnum
lr_schedule = [(int(warmup_end_epoch + 0.5), cfg.TRAIN.BASE_LR)]
factor = 8. / cfg.TRAIN.NUM_GPUS
for idx, steps in enumerate(cfg.TRAIN.LR_SCHEDULE[:-1]):
mult = 0.1 ** (idx + 1)
lr_schedule.append(
(steps * factor // stepnum, cfg.TRAIN.BASE_LR * mult))
logger.info("Warm Up Schedule (steps, value): " + str(warmup_schedule))
logger.info("LR Schedule (epochs, value): " + str(lr_schedule))
train_dataflow = get_train_dataflow()
# This is what's commonly referred to as "epochs"
total_passes = cfg.TRAIN.LR_SCHEDULE[-1] * 8 / train_dataflow.size()
logger.info("Total passes of the training set is: {:.5g}".format(total_passes))
callbacks = [
PeriodicCallback(
ModelSaver(max_to_keep=10, keep_checkpoint_every_n_hours=1),
# every_k_epochs=1),
every_k_epochs=20),
# linear warmup
ScheduledHyperParamSetter(
'learning_rate', warmup_schedule, interp='linear', step_based=True),
ScheduledHyperParamSetter('learning_rate', lr_schedule),
PeakMemoryTracker(),
EstimatedTimeLeft(median=True),
SessionRunTimeout(60000).set_chief_only(True), # 1 minute timeout
] + [
EvalCallback(dataset, *MODEL.get_inference_tensor_names(), args.logdir)
for dataset in cfg.DATA.VAL
]
if not is_horovod:
callbacks.append(GPUUtilizationTracker())
start_epoch = cfg.TRAIN.STARTING_EPOCH
if is_horovod and hvd.rank() > 0:
session_init = None
else:
# first try to find existing model
checkpoint_path = os.path.join(args.logdir, "checkpoint")
if os.path.exists(checkpoint_path):
session_init = get_model_loader(checkpoint_path)
start_step = int(session_init.path.split("-")[-1])
start_epoch = start_step // stepnum
logger.info(
"initializing from existing model, " + session_init.path + ", starting from epoch " + str(start_epoch))
else:
if args.load:
session_init = get_model_loader(args.load)
else:
session_init = get_model_loader(cfg.BACKBONE.WEIGHTS) if cfg.BACKBONE.WEIGHTS else None
max_epoch = min(cfg.TRAIN.LR_SCHEDULE[-1] * factor // stepnum, cfg.TRAIN.MAX_NUM_EPOCHS)
traincfg = TrainConfig(
model=MODEL,
data=QueueInput(train_dataflow),
callbacks=callbacks,
steps_per_epoch=stepnum,
# max_epoch=cfg.TRAIN.LR_SCHEDULE[-1] * factor // stepnum,
max_epoch=max_epoch,
session_init=session_init,
starting_epoch=start_epoch
)
if is_horovod:
trainer = HorovodTrainer(average=False)
else:
# nccl mode appears faster than cpu mode
trainer = SyncMultiGPUTrainerReplicated(cfg.TRAIN.NUM_GPUS, average=False, mode='nccl')
launch_train_with_config(traincfg, trainer)