-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathviz.py
executable file
·100 lines (83 loc) · 2.76 KB
/
viz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# -*- coding: utf-8 -*-
# File: viz.py
import numpy as np
from six.moves import zip
from tensorpack.utils import viz
from tensorpack.utils.palette import PALETTE_RGB
from config import config as cfg
from utils.np_box_ops import iou as np_iou
def draw_annotation(img, boxes, klass, is_crowd=None):
"""Will not modify img"""
labels = []
assert len(boxes) == len(klass)
if is_crowd is not None:
assert len(boxes) == len(is_crowd)
for cls, crd in zip(klass, is_crowd):
clsname = cfg.DATA.CLASS_NAMES[cls]
if crd == 1:
clsname += ';Crowd'
labels.append(clsname)
else:
for cls in klass:
labels.append(cfg.DATA.CLASS_NAMES[cls])
img = viz.draw_boxes(img, boxes, labels)
return img
def draw_proposal_recall(img, proposals, proposal_scores, gt_boxes):
"""
Draw top3 proposals for each gt.
Args:
proposals: NPx4
proposal_scores: NP
gt_boxes: NG
"""
box_ious = np_iou(gt_boxes, proposals) # ng x np
box_ious_argsort = np.argsort(-box_ious, axis=1)
good_proposals_ind = box_ious_argsort[:, :3] # for each gt, find 3 best proposals
good_proposals_ind = np.unique(good_proposals_ind.ravel())
proposals = proposals[good_proposals_ind, :]
tags = list(map(str, proposal_scores[good_proposals_ind]))
img = viz.draw_boxes(img, proposals, tags)
return img, good_proposals_ind
def draw_predictions(img, boxes, scores):
"""
Args:
boxes: kx4
scores: kxC
"""
if len(boxes) == 0:
return img
labels = scores.argmax(axis=1)
scores = scores.max(axis=1)
tags = ["{},{:.2f}".format(cfg.DATA.CLASS_NAMES[lb], score) for lb, score in zip(labels, scores)]
return viz.draw_boxes(img, boxes, tags)
def draw_final_outputs(img, results):
"""
Args:
results: [DetectionResult]
"""
if len(results) == 0:
return img
tags = []
for r in results:
tags.append(
"{},{:.2f}".format(cfg.DATA.CLASS_NAMES[r.class_id], r.score))
boxes = np.asarray([r.box for r in results])
ret = viz.draw_boxes(img, boxes, tags)
for r in results:
if r.mask is not None:
ret = draw_mask(ret, r.mask)
return ret
def draw_mask(im, mask, alpha=0.5, color=None):
"""
Overlay a mask on top of the image.
Args:
im: a 3-channel uint8 image in BGR
mask: a binary 1-channel image of the same size
color: if None, will choose automatically
"""
if color is None:
color = PALETTE_RGB[np.random.choice(len(PALETTE_RGB))][::-1]
im = np.where(np.repeat((mask > 0)[:, :, None], 3, axis=2),
im * (1 - alpha) + color * alpha, im)
im = im.astype('uint8')
return im