-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathembed_all.py
executable file
·68 lines (54 loc) · 2.56 KB
/
embed_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#!/usr/bin/env python3
import argparse
from importlib import import_module
from os.path import splitext, join as pjoin
import cv2
import numpy as np
import h5py
import lib
from lib.models import add_defaults
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Embed many images.')
parser.add_argument('--basedir', default='.',
help='Path to the folder containing all images.')
parser.add_argument('--outfile', default='embeddings.h5',
help='Name of the output hdf5 file in which to store the embeddings.')
parser.add_argument('--model', default='lunet2',
help='Name of the model to load. Corresponds to module names in lib/models. Or `fake`')
parser.add_argument('--weights', default='/work/breuers/dukeMTMC/models/lunet2-final.pkl',
help='Name of the weights to load for the model (path to .pkl file).')
parser.add_argument('--scale', default=1.0, type=float,
help='Scale factor to scale images before embedding them.')
parser.add_argument('--t0', type=int)
parser.add_argument('--t1', type=int)
args = parser.parse_args()
print(args)
mod = import_module('lib.models.' + args.model)
net = add_defaults(mod.mknet())
try:
net.load(args.weights)
except ValueError:
print("!!!!!!!THE WEIGHTS YOU LOADED DON'T BELONG TO THE MODEL YOU'RE USING!!!!!!")
raise
# Shares the weights, just replaces the avg-pooling layer.
net_hires = mod.hires_shared_twin(net)
net_hires.evaluate()
if args.t0 is None or args.t1 is None:
all_files = sane_listdir(args.basedir, sortkey=lambda f: int(splitext(f)[0]))
else:
all_files = ['{}.jpg'.format(i) for i in range(args.t0, args.t1+1)]
print("Precompiling network...", end='', flush=True)
img = lib.imread(pjoin(args.basedir, all_files[0]))
img = lib.img2df(img, lib.scale_shape(img.shape, args.scale))
out = net_hires.forward(img[None])
print(" Done", flush=True)
with h5py.File(args.outfile, 'w') as f_out:
ds = f_out.create_dataset('embs', shape=(len(all_files),) + out.shape[1:], dtype=out.dtype)
for i, fname in enumerate(all_files):
print("\r{} ({}/{})".format(fname, i, len(all_files)), end='', flush=True)
img = lib.imread(pjoin(args.basedir, fname))
img = lib.img2df(img, lib.scale_shape(img.shape, args.scale))
ds[i] = net_hires.forward(img[None])
if i % 100 == 0:
f_out.flush()
print(" Done")