-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathsimple_track_duke.py
162 lines (134 loc) · 5.89 KB
/
simple_track_duke.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# -*- coding: utf-8 -*-
#TODO: comments/doc
import numpy as np
from filterpy.kalman import KalmanFilter
import scipy
from scipy import ndimage
from scipy import signal
from scipy.linalg import block_diag,inv
from filterpy.common import Q_discrete_white_noise
from filterpy.stats import plot_covariance_ellipse
import matplotlib.pyplot as plt
from os.path import join as pjoin
import lib
import lbtoolbox.plotting as lbplt
# all_bs for bbox regression
all_bs = np.array([[256.3190, -0.0207, 136.6533, 0.1978],
[212.9634, 0.0055, 126.0157, 0.2036],
[277.3869, -0.0154, 5.2019, 0.4442],
[-296.1867, 0.3356, 54.3528, 0.3093],
[258.1709, -0.0258, 144.2437, 0.2030],
[152.2878, 0.0296, -271.9162, 0.6985],
[208.9894, 0.0349, -298.6897, 0.7266],
[170.6156, 0.0128, 81.8043, 0.1659]])
HOT_CMAP = lib.get_transparent_colormap()
class Track(object):
""" Implements a track (not a tracker, a track).
With KalmanFilter and some other stuff like status for track management
Attributes
----------
TODO
"""
def __init__(self, dt, curr_frame, init_pose, track_dim=4, det_dim=2, track_id=-1,
embedding=None, debug_out_dir=None, init_thresh=3, delete_thresh=5,):
self.debug_out_dir = debug_out_dir
init_x = [init_pose[0], 0.0, init_pose[1], 0.0]
init_P = [[200.0, 0, 0, 0], [0, 100.0, 0, 0], [0, 0, 200.0, 0], [0, 0, 0, 100.0]]
self.track_id = track_id
self.color = np.random.rand(3)
self.xs=[init_x]
self.Ps=[init_P]
self.KF = KalmanFilter(dim_x=track_dim, dim_z=det_dim)
self.KF.F = np.array([[1, dt, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, dt],
[0, 0, 0, 1]], dtype=np.float64)
q = Q_discrete_white_noise(dim=2, dt=dt, var=50.)
self.KF.Q = block_diag(q, q)
self.KF.H = np.array([[1, 0, 0, 0],
[0, 0, 1, 0]], dtype=np.float64)
self.KF.R = np.array([[50.0, 0],
[0, 50.0]], dtype=np.float64)
self.KF.x = init_x
self.KF.P = init_P
self.missed_for = 0
self.deleted_at = 0
self.last_matched_at = curr_frame
self.created_at = curr_frame
self.age = 1 #age in frames
#missed for [delete_thresh] times? delete!
self.delete_thresh = delete_thresh #240=4 seconds ("occluded by car"-scenario in cam1)
self.init_thresh = init_thresh #of consecutive detection responses before reporting this track
# set status: {init, matched, missed, deleted}
if self.init_thresh == 1:
self.status='matched'
else:
self.status='init'
self.poses=[init_pose]
#only if ReID is used for DA
self.embedding = embedding
# ==Track state==
def track_predict(self):
# standard KF
self.KF.predict()
def track_update(self, z):
self.KF.update(z)
# ==Track status management==
def track_is_missed(self,curr_frame):
self.missed_for += 1
self.status = 'missed'
if (self.missed_for >= self.delete_thresh) or (self.status=='init'):
self.track_is_deleted(curr_frame)
else:
self.age += 1
self.xs.append(self.KF.x)
self.Ps.append(self.KF.P)
self.poses.append([self.KF.x[0],self.KF.x[2]])
def track_is_matched(self,curr_frame):
self.last_matched_at = curr_frame
self.missed_for = 0
self.age += 1
self.xs.append(self.KF.x)
self.Ps.append(self.KF.P)
self.poses.append([self.KF.x[0],self.KF.x[2]])
if ((self.status=='init') and (curr_frame-self.created_at+1 < self.init_thresh)):
pass # stay in init as long as threshold not exceeded
else:
self.status = 'matched' # in all other cases, go to matched
def track_is_deleted(self,curr_frame):
self.deleted_at = curr_frame
self.status = 'deleted'
# ==Evaluation==
def get_track_eval_line(self,cid=1,frame=0):
if (self.status == 'deleted' or self.status == 'init'):
return None
#pymot format
#[height,width,id,y,x,z]
#return {"height": 0, "width": 0, "id": self.track_id, "y": self.KF.x[2], "x": self.KF.x[0], "z": 0}
#motchallenge format
#TODO
#dukeMTMC format
#[cam, ID, frame, left, top, width, height, worldX, worldY]
cX,cY = self.poses[-1]
h = int(((all_bs[cid-1][0]+all_bs[cid-1][1]*cX) + (all_bs[cid-1][2]+all_bs[cid-1][3]*cY))/2)
w = int(0.4*h)
l = int(cX-w/2)
t = int(cY-h/2)
# id-shift-quick-hack for multi-cam eval.
return [cid, self.track_id+cid*100000, lib.glob2loc(frame,cid), l, t, w, h, -1, -1]
# ==Visualization==
def plot_track(self, ax, plot_past_trajectory=False, output_shape=None):
if (self.status == 'deleted' or self.status == 'init'):
return
#plot_covariance_ellipse((self.KF.x[0], self.KF.x[2]), self.KF.P, fc=self.color, alpha=0.4, std=[1,2,3])
#print(self.poses)
cX, vX, cY, vY = self.xs[-1]
#print('vX: {}, vY: {}'.format(vX,vY))
ax.plot(cX, cY, color=self.color, marker='o')
ax.arrow(cX, cY, vX, vY, head_width=50, head_length=20, fc=self.color, ec=self.color)
plot_covariance_ellipse((cX+vX, cY+vY), self.KF.P[1::2,1::2], fc=self.color, alpha=0.5, std=[3])
plot_covariance_ellipse((cX, cY), self.KF.P[::2,::2], fc=self.color, alpha=0.5, std=[1, 2, 3])
#plt.text(*self.state_to_output(*self.poses[-1], output_shape=output_shape), s='{}'.format(self.track_id))
if plot_past_trajectory and len(self.poses)>1:
outputs_xy = np.array(self.poses)
ax.plot(*outputs_xy.T, linewidth=2.0, color=self.color)