forked from NVIDIA/Stable-Diffusion-WebUI-TensorRT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utilities.py
331 lines (298 loc) · 11.7 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
#
# Copyright 2022 The HuggingFace Inc. team.
# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
from torch.cuda import nvtx
from collections import OrderedDict
import numpy as np
from polygraphy.backend.common import bytes_from_path
from polygraphy import util
from polygraphy.backend.trt import ModifyNetworkOutputs, Profile
from polygraphy.backend.trt import (
engine_from_bytes,
engine_from_network,
network_from_onnx_path,
save_engine,
)
from polygraphy.logger import G_LOGGER
import tensorrt as trt
from logging import error, warning
from tqdm import tqdm
import copy
TRT_LOGGER = trt.Logger(trt.Logger.ERROR)
G_LOGGER.module_severity = G_LOGGER.ERROR
# Map of numpy dtype -> torch dtype
numpy_to_torch_dtype_dict = {
np.uint8: torch.uint8,
np.int8: torch.int8,
np.int16: torch.int16,
np.int32: torch.int32,
np.int64: torch.int64,
np.float16: torch.float16,
np.float32: torch.float32,
np.float64: torch.float64,
np.complex64: torch.complex64,
np.complex128: torch.complex128,
}
if np.version.full_version >= "1.24.0":
numpy_to_torch_dtype_dict[np.bool_] = torch.bool
else:
numpy_to_torch_dtype_dict[np.bool] = torch.bool
# Map of torch dtype -> numpy dtype
torch_to_numpy_dtype_dict = {
value: key for (key, value) in numpy_to_torch_dtype_dict.items()
}
class TQDMProgressMonitor(trt.IProgressMonitor):
def __init__(self):
trt.IProgressMonitor.__init__(self)
self._active_phases = {}
self._step_result = True
self.max_indent = 5
def phase_start(self, phase_name, parent_phase, num_steps):
leave = False
try:
if parent_phase is not None:
nbIndents = (
self._active_phases.get(parent_phase, {}).get(
"nbIndents", self.max_indent
)
+ 1
)
if nbIndents >= self.max_indent:
return
else:
nbIndents = 0
leave = True
self._active_phases[phase_name] = {
"tq": tqdm(
total=num_steps, desc=phase_name, leave=leave, position=nbIndents
),
"nbIndents": nbIndents,
"parent_phase": parent_phase,
}
except KeyboardInterrupt:
# The phase_start callback cannot directly cancel the build, so request the cancellation from within step_complete.
_step_result = False
def phase_finish(self, phase_name):
try:
if phase_name in self._active_phases.keys():
self._active_phases[phase_name]["tq"].update(
self._active_phases[phase_name]["tq"].total
- self._active_phases[phase_name]["tq"].n
)
parent_phase = self._active_phases[phase_name].get("parent_phase", None)
while parent_phase is not None:
self._active_phases[parent_phase]["tq"].refresh()
parent_phase = self._active_phases[parent_phase].get(
"parent_phase", None
)
if (
self._active_phases[phase_name]["parent_phase"]
in self._active_phases.keys()
):
self._active_phases[
self._active_phases[phase_name]["parent_phase"]
]["tq"].refresh()
del self._active_phases[phase_name]
pass
except KeyboardInterrupt:
_step_result = False
def step_complete(self, phase_name, step):
try:
if phase_name in self._active_phases.keys():
self._active_phases[phase_name]["tq"].update(
step - self._active_phases[phase_name]["tq"].n
)
return self._step_result
except KeyboardInterrupt:
# There is no need to propagate this exception to TensorRT. We can simply cancel the build.
return False
class Engine:
def __init__(
self,
engine_path,
):
self.engine_path = engine_path
self.engine = None
self.context = None
self.buffers = OrderedDict()
self.tensors = OrderedDict()
self.cuda_graph_instance = None # cuda graph
def __del__(self):
del self.engine
del self.context
del self.buffers
del self.tensors
def reset(self, engine_path=None):
del self.engine
del self.context
del self.buffers
del self.tensors
self.engine_path = engine_path
self.buffers = OrderedDict()
self.tensors = OrderedDict()
self.inputs = {}
self.outputs = {}
def refit_from_dict(self, refit_weights, is_fp16):
# Initialize refitter
refitter = trt.Refitter(self.engine, TRT_LOGGER)
refitted_weights = set()
# iterate through all tensorrt refittable weights
for trt_weight_name in refitter.get_all_weights():
if trt_weight_name not in refit_weights:
continue
# get weight from state dict
trt_datatype = trt.DataType.FLOAT
if is_fp16:
refit_weights[trt_weight_name] = refit_weights[trt_weight_name].half()
trt_datatype = trt.DataType.HALF
# trt.Weight and trt.TensorLocation
refit_weights[trt_weight_name] = refit_weights[trt_weight_name].cpu()
trt_wt_tensor = trt.Weights(
trt_datatype,
refit_weights[trt_weight_name].data_ptr(),
torch.numel(refit_weights[trt_weight_name]),
)
trt_wt_location = (
trt.TensorLocation.DEVICE
if refit_weights[trt_weight_name].is_cuda
else trt.TensorLocation.HOST
)
# apply refit
# refitter.set_named_weights(trt_weight_name, trt_wt_tensor, trt_wt_location)
refitter.set_named_weights(trt_weight_name, trt_wt_tensor)
refitted_weights.add(trt_weight_name)
assert set(refitted_weights) == set(refit_weights.keys())
if not refitter.refit_cuda_engine():
print("Error: failed to refit new weights.")
exit(0)
def build(
self,
onnx_path,
fp16,
input_profile=None,
enable_refit=False,
enable_preview=False,
enable_all_tactics=False,
timing_cache=None,
update_output_names=None,
):
print(f"Building TensorRT engine for {onnx_path}: {self.engine_path}")
p = [Profile()]
if input_profile:
p = [Profile() for i in range(len(input_profile))]
for _p, i_profile in zip(p, input_profile):
for name, dims in i_profile.items():
assert len(dims) == 3
_p.add(name, min=dims[0], opt=dims[1], max=dims[2])
config_kwargs = {}
if not enable_all_tactics:
config_kwargs["tactic_sources"] = []
network = network_from_onnx_path(
onnx_path, flags=[trt.OnnxParserFlag.NATIVE_INSTANCENORM]
)
if update_output_names:
print(f"Updating network outputs to {update_output_names}")
network = ModifyNetworkOutputs(network, update_output_names)
builder = network[0]
config = builder.create_builder_config()
config.progress_monitor = TQDMProgressMonitor()
config.set_flag(trt.BuilderFlag.FP16) if fp16 else None
config.set_flag(trt.BuilderFlag.REFIT) if enable_refit else None
cache = None
try:
with util.LockFile(timing_cache):
timing_cache_data = util.load_file(
timing_cache, description="tactic timing cache"
)
cache = config.create_timing_cache(timing_cache_data)
except FileNotFoundError:
warning(
"Timing cache file {} not found, falling back to empty timing cache.".format(
timing_cache
)
)
if cache is not None:
config.set_timing_cache(cache, ignore_mismatch=True)
profiles = copy.deepcopy(p)
for profile in profiles:
# Last profile is used for set_calibration_profile.
calib_profile = profile.fill_defaults(network[1]).to_trt(
builder, network[1]
)
config.add_optimization_profile(calib_profile)
try:
engine = engine_from_network(
network,
config,
save_timing_cache=timing_cache,
)
except Exception as e:
error(f"Failed to build engine: {e}")
return 1
try:
save_engine(engine, path=self.engine_path)
except Exception as e:
error(f"Failed to save engine: {e}")
return 1
return 0
def load(self):
print(f"Loading TensorRT engine: {self.engine_path}")
self.engine = engine_from_bytes(bytes_from_path(self.engine_path))
def activate(self, reuse_device_memory=None):
if reuse_device_memory:
self.context = self.engine.create_execution_context_without_device_memory()
# self.context.device_memory = reuse_device_memory
else:
self.context = self.engine.create_execution_context()
def allocate_buffers(self, shape_dict=None, device="cuda"):
nvtx.range_push("allocate_buffers")
for idx in range(self.engine.num_io_tensors):
binding = self.engine[idx]
if shape_dict and binding in shape_dict:
shape = shape_dict[binding].shape
else:
shape = self.context.get_binding_shape(idx)
dtype = trt.nptype(self.engine.get_binding_dtype(binding))
if self.engine.binding_is_input(binding):
self.context.set_binding_shape(idx, shape)
tensor = torch.empty(
tuple(shape), dtype=numpy_to_torch_dtype_dict[dtype]
).to(device=device)
self.tensors[binding] = tensor
nvtx.range_pop()
def infer(self, feed_dict, stream, use_cuda_graph=False):
nvtx.range_push("set_tensors")
for name, buf in feed_dict.items():
self.tensors[name].copy_(buf)
for name, tensor in self.tensors.items():
self.context.set_tensor_address(name, tensor.data_ptr())
nvtx.range_pop()
nvtx.range_push("execute")
noerror = self.context.execute_async_v3(stream)
if not noerror:
raise ValueError("ERROR: inference failed.")
nvtx.range_pop()
return self.tensors
def __str__(self):
out = ""
for opt_profile in range(self.engine.num_optimization_profiles):
for binding_idx in range(self.engine.num_bindings):
name = self.engine.get_binding_name(binding_idx)
shape = self.engine.get_profile_shape(opt_profile, name)
out += f"\t{name} = {shape}\n"
return out