forked from Plasmatree/PID-Analyzer
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPID-Analyzer.py
executable file
·1036 lines (871 loc) · 48.2 KB
/
PID-Analyzer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
import argparse
import logging
import os
import subprocess
import time
import numpy as np
from pandas import read_csv
from matplotlib import rcParams
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d
from matplotlib.gridspec import GridSpec
from scipy.ndimage.filters import gaussian_filter1d
import matplotlib.colors as colors
from scipy.optimize import minimize, basinhopping
from six.moves import input as sinput
# ----------------------------------------------------------------------------------
# "THE BEER-WARE LICENSE" (Revision 42):
# <[email protected]> wrote this file. As long as you retain this notice you
# can do whatever you want with this stuff. If we meet some day, and you think
# this stuff is worth it, you can buy me a beer in return. Florian Melsheimer
# ----------------------------------------------------------------------------------
Version = 'PID-Analyzer 0.52'
LOG_MIN_BYTES = 500000
class Trace:
framelen = 1. # length of each single frame over which to compute response
resplen = 0.5 # length of respose window
cutfreq = 25. # cutfreqency of what is considered as input
tuk_alpha = 1.0 # alpha of tukey window, if used
superpos = 16 # sub windowing (superpos windows in framelen)
low_threshold = 50 # treshold for 'looooow input rate'
threshold = 500. # threshold for 'high input rate'
noise_framelen = 0.3 # window width for noise analysis
noise_superpos = 16 # subsampling for noise analysis windows
def __init__(self, data):
self.data = data
self.input = self.equalize(data['time'], self.pid_in(data['p_err'], data['gyro'], data['P']))[1] # /20.
self.data.update({'input': self.pid_in(data['p_err'], data['gyro'], data['P'])})
self.equalize_data()
self.name = self.data['name']
self.time = self.data['time']
self.dt=self.time[0]-self.time[1]
self.input = self.data['input']
#enable this to generate artifical gyro trace with known system response
#self.data['gyro']=self.toy_out(self.input, delay=0.01, mode='normal')####
self.gyro = self.data['gyro']
self.throttle = self.data['throttle']
self.throt_hist, self.throt_scale = np.histogram(self.throttle, np.linspace(0, 100, 101, dtype=np.float64), density=True)
self.flen = self.stepcalc(self.time, Trace.framelen) # array len corresponding to framelen in s
self.rlen = self.stepcalc(self.time, Trace.resplen) # array len corresponding to resplen in s
self.time_resp = self.time[0:self.rlen]-self.time[0]
self.stacks = self.winstacker({'time':[],'input':[],'gyro':[], 'throttle':[]}, self.flen, Trace.superpos) # [[time, input, output],]
self.window = np.hanning(self.flen) #self.tukeywin(self.flen, self.tuk_alpha)
self.spec_sm, self.avr_t, self.avr_in, self.max_in, self.max_thr = self.stack_response(self.stacks, self.window)
self.low_mask, self.high_mask = self.low_high_mask(self.max_in, self.threshold) #calcs masks for high and low inputs according to threshold
self.toolow_mask = self.low_high_mask(self.max_in, 20)[1] #mask for ignoring noisy low input
self.resp_sm = self.weighted_mode_avr(self.spec_sm, self.toolow_mask, [-1.5,3.5], 1000)
self.resp_quality = -self.to_mask((np.abs(self.spec_sm -self.resp_sm[0]).mean(axis=1)).clip(0.5-1e-9,0.5))+1.
# masking by setting trottle of unwanted traces to neg
self.thr_response = self.hist2d(self.max_thr * (2. * (self.toolow_mask*self.resp_quality) - 1.), self.time_resp,
(self.spec_sm.transpose() * self.toolow_mask).transpose(), [101, self.rlen])
self.resp_low = self.weighted_mode_avr(self.spec_sm, self.low_mask*self.toolow_mask, [-1.5,3.5], 1000)
if self.high_mask.sum()>0:
self.resp_high = self.weighted_mode_avr(self.spec_sm, self.high_mask*self.toolow_mask, [-1.5,3.5], 1000)
self.noise_winlen = self.stepcalc(self.time, Trace.noise_framelen)
self.noise_stack = self.winstacker({'time':[], 'gyro':[], 'throttle':[], 'd_err':[], 'debug':[]},
self.noise_winlen, Trace.noise_superpos)
self.noise_win = np.hanning(self.noise_winlen)
self.noise_gyro = self.stackspectrum(self.noise_stack['time'],self.noise_stack['throttle'],self.noise_stack['gyro'], self.noise_win)
self.noise_d = self.stackspectrum(self.noise_stack['time'], self.noise_stack['throttle'], self.noise_stack['d_err'], self.noise_win)
self.noise_debug = self.stackspectrum(self.noise_stack['time'], self.noise_stack['throttle'], self.noise_stack['debug'], self.noise_win)
if self.noise_debug['hist2d'].sum()>0:
## mask 0 entries
thr_mask = self.noise_gyro['throt_hist_avr'].clip(0,1)
self.filter_trans = np.average(self.noise_gyro['hist2d'], axis=1, weights=thr_mask)/\
np.average(self.noise_debug['hist2d'], axis=1, weights=thr_mask)
else:
self.filter_trans = self.noise_gyro['hist2d'].mean(axis=1)*0.
@staticmethod
def low_high_mask(signal, threshold):
low = np.copy(signal)
low[low <=threshold] = 1.
low[low > threshold] = 0.
high = -low+1.
if high.sum() < 10: # ignore high pinput that is too short
high *= 0.
return low, high
def to_mask(self, clipped):
clipped-=clipped.min()
clipped/=clipped.max()
return clipped
def pid_in(self, pval, gyro, pidp):
pidin = gyro + pval / (0.032029 * pidp) # 0.032029 is P scaling factor from betaflight
return pidin
def rate_curve(self, rcin, inmax=500., outmax=800., rate=160.):
### an estimated rate curve. not used.
expoin = (np.exp((rcin - inmax) / rate) - np.exp((-rcin - inmax) / rate)) * outmax
return expoin
def calc_delay(self, time, trace1, trace2):
### minimizes trace1-trace2 by shifting trace1
tf1 = interp1d(time[2000:-2000], trace1[2000:-2000], fill_value=0., bounds_error=False)
tf2 = interp1d(time[2000:-2000], trace2[2000:-2000], fill_value=0., bounds_error=False)
fun = lambda x: ((tf1(time - x*0.5) - tf2(time+ x*0.5)) ** 2).mean()
shift = minimize(fun, np.array([0.01])).x[0]
steps = np.round(shift / (time[1] - time[0]))
return {'time':shift, 'steps':int(steps)}
def tukeywin(self, len, alpha=0.5):
### makes tukey widow for envelopig
M = len
n = np.arange(M - 1.) #
if alpha <= 0:
return np.ones(M) # rectangular window
elif alpha >= 1:
return np.hanning(M)
# Normal case
x = np.linspace(0, 1, M, dtype=np.float64)
w = np.ones(x.shape)
# first condition 0 <= x < alpha/2
first_condition = x < alpha / 2
w[first_condition] = 0.5 * (1 + np.cos(2 * np.pi / alpha * (x[first_condition] - alpha / 2)))
# second condition already taken care of
# third condition 1 - alpha / 2 <= x <= 1
third_condition = x >= (1 - alpha / 2)
w[third_condition] = 0.5 * (1 + np.cos(2 * np.pi / alpha * (x[third_condition] - 1 + alpha / 2)))
return w
def toy_out(self, inp, delay=0.01, length=0.01, noise=5., mode='normal', sinfreq=100.):
# generates artificial output for benchmarking
freq= 1./(self.time[1]-self.time[0])
toyresp = np.zeros(int((delay+length)*freq))
toyresp[int((delay)*freq):]=1.
toyresp/=toyresp.sum()
toyout = np.convolve(inp, toyresp, mode='full')[:len(inp)]#*0.9
if mode=='normal':
noise_sig = (np.random.random_sample(len(toyout))-0.5)*noise
elif mode=='sin':
noise_sig = (np.sin(2.*np.pi*self.time*sinfreq)) * noise
else:
noise_sig=0.
return toyout+noise_sig
def equalize(self, time, data):
### equalizes time scale
data_f = interp1d(time, data)
newtime = np.linspace(time[0], time[-1], len(time), dtype=np.float64)
return newtime, data_f(newtime)
def equalize_data(self):
### equalizes full dict of data
time = self.data['time']
newtime = np.linspace(time[0], time[-1], len(time), dtype=np.float64)
for key in self.data:
if isinstance(self.data[key],np.ndarray):
if len(self.data[key])==len(time):
self.data[key]= interp1d(time, self.data[key])(newtime)
self.data['time']=newtime
def stepcalc(self, time, duration):
### calculates frequency and resulting windowlength
tstep = (time[1]-time[0])
freq = 1./tstep
arr_len = duration * freq
return int(arr_len)
def winstacker(self, stackdict, flen, superpos):
### makes stack of windows for deconvolution
tlen = len(self.data['time'])
shift = int(flen/superpos)
wins = int(tlen/shift)-superpos
for i in np.arange(wins):
for key in stackdict.keys():
stackdict[key].append(self.data[key][i * shift:i * shift + flen])
for k in stackdict.keys():
#print 'key',k
#print stackdict[k]
stackdict[k]=np.array(stackdict[k], dtype=np.float64)
return stackdict
def wiener_deconvolution(self, input, output, cutfreq): # input/output are two-dimensional
pad = 1024 - (len(input[0]) % 1024) # padding to power of 2, increases transform speed
input = np.pad(input, [[0,0],[0,pad]], mode='constant')
output = np.pad(output, [[0, 0], [0, pad]], mode='constant')
H = np.fft.fft(input, axis=-1)
G = np.fft.fft(output,axis=-1)
freq = np.abs(np.fft.fftfreq(len(input[0]), self.dt))
sn = self.to_mask(np.clip(np.abs(freq), cutfreq-1e-9, cutfreq))
len_lpf=np.sum(np.ones_like(sn)-sn)
sn=self.to_mask(gaussian_filter1d(sn,len_lpf/6.))
sn= 10.*(-sn+1.+1e-9) # +1e-9 to prohibit 0/0 situations
Hcon = np.conj(H)
deconvolved_sm = np.real(np.fft.ifft(G * Hcon / (H * Hcon + 1./sn),axis=-1))
return deconvolved_sm
def stack_response(self, stacks, window):
inp = stacks['input'] * window
outp = stacks['gyro'] * window
thr = stacks['throttle'] * window
deconvolved_sm = self.wiener_deconvolution(inp, outp, self.cutfreq)[:, :self.rlen]
delta_resp = deconvolved_sm.cumsum(axis=1)
max_thr = np.abs(np.abs(thr)).max(axis=1)
avr_in = np.abs(np.abs(inp)).mean(axis=1)
max_in = np.max(np.abs(inp), axis=1)
avr_t = stacks['time'].mean(axis=1)
return delta_resp, avr_t, avr_in, max_in, max_thr
def spectrum(self, time, traces):
### fouriertransform for noise analysis. returns frequencies and spectrum.
pad = 1024 - (len(traces[0]) % 1024) # padding to power of 2, increases transform speed
traces = np.pad(traces, [[0, 0], [0, pad]], mode='constant')
trspec = np.fft.rfft(traces, axis=-1, norm='ortho')
trfreq = np.fft.rfftfreq(len(traces[0]), time[1] - time[0])
return trfreq, trspec
def stackfilter(self, time, trace_ref, trace_filt, window):
### calculates filter transmission and phaseshift from stack of windows. Not in use, maybe later.
# slicing off last 2s to get rid of landing
#maybe pass throttle for further analysis...
filt = trace_filt[:-int(Trace.noise_superpos * 2. / Trace.noise_framelen), :] * window
ref = trace_ref[:-int(Trace.noise_superpos * 2. / Trace.noise_framelen), :] * window
time = time[:-int(Trace.noise_superpos * 2. / Trace.noise_framelen), :]
full_freq_f, full_spec_f = self.spectrum(self.data['time'], [self.data['gyro']])
full_freq_r, full_spec_r = self.spectrum(self.data['time'], [self.data['debug']])
f_amp_freq, f_amp_hist =np.histogram(full_freq_f, weights=np.abs(full_spec_f.real).flatten(), bins=int(full_freq_f[-1]))
r_amp_freq, r_amp_hist = np.histogram(full_freq_r, weights=np.abs(full_spec_r.real).flatten(), bins=int(full_freq_r[-1]))
def hist2d(self, x, y, weights, bins): #bins[nx,ny]
### generates a 2d hist from input 1d axis for x,y. repeats them to match shape of weights X*Y (data points)
### x will be 0-100%
freqs = np.repeat(np.array([y], dtype=np.float64), len(x), axis=0)
throts = np.repeat(np.array([x], dtype=np.float64), len(y), axis=0).transpose()
throt_hist_avr, throt_scale_avr = np.histogram(x, 101, [0, 100])
hist2d = np.histogram2d(throts.flatten(), freqs.flatten(),
range=[[0, 100], [y[0], y[-1]]],
bins=bins, weights=weights.flatten(), density=False)[0].transpose()
hist2d = np.array(abs(hist2d), dtype=np.float64)
hist2d_norm = np.copy(hist2d)
hist2d_norm /= (throt_hist_avr + 1e-9)
return {'hist2d_norm':hist2d_norm, 'hist2d':hist2d, 'throt_hist':throt_hist_avr,'throt_scale':throt_scale_avr}
def stackspectrum(self, time, throttle, trace, window):
### calculates spectrogram from stack of windows against throttle.
# slicing off last 2s to get rid of landing
gyro = trace[:-int(Trace.noise_superpos*2./Trace.noise_framelen),:] * window
thr = throttle[:-int(Trace.noise_superpos*2./Trace.noise_framelen),:] * window
time = time[:-int(Trace.noise_superpos*2./Trace.noise_framelen),:]
freq, spec = self.spectrum(time[0], gyro)
weights = abs(spec.real)
avr_thr = np.abs(thr).max(axis=1)
hist2d=self.hist2d(avr_thr, freq,weights,[101,int(len(freq)/4)])
filt_width = 3 # width of gaussian smoothing for hist data
hist2d_sm = gaussian_filter1d(hist2d['hist2d_norm'], filt_width, axis=1, mode='constant')
# get max value in histogram >100hz
thresh = 100.
mask = self.to_mask(freq[:-1:4].clip(thresh-1e-9,thresh))
maxval = np.max(hist2d_sm.transpose()*mask)
return {'throt_hist_avr':hist2d['throt_hist'],'throt_axis':hist2d['throt_scale'],'freq_axis':freq[::4],
'hist2d_norm':hist2d['hist2d_norm'], 'hist2d_sm':hist2d_sm, 'hist2d':hist2d['hist2d'], 'max':maxval}
def weighted_mode_avr(self, values, weights, vertrange, vertbins):
### finds the most common trace and std
threshold = 0.5 # threshold for std calculation
filt_width = 7 # width of gaussian smoothing for hist data
resp_y = np.linspace(vertrange[0], vertrange[-1], vertbins, dtype=np.float64)
times = np.repeat(np.array([self.time_resp],dtype=np.float64), len(values), axis=0)
weights = np.repeat(weights, len(values[0]))
hist2d = np.histogram2d(times.flatten(), values.flatten(),
range=[[self.time_resp[0], self.time_resp[-1]], vertrange],
bins=[len(times[0]), vertbins], weights=weights.flatten())[0].transpose()
### shift outer edges by +-1e-5 (10us) bacause of dtype32. Otherwise different precisions lead to artefacting.
### solution to this --> somethings strage here. In outer most edges some bins are doubled, some are empty.
### Hence sometimes produces "divide by 0 error" in "/=" operation.
if hist2d.sum():
hist2d_sm = gaussian_filter1d(hist2d, filt_width, axis=0, mode='constant')
hist2d_sm /= np.max(hist2d_sm, 0)
pixelpos = np.repeat(resp_y.reshape(len(resp_y), 1), len(times[0]), axis=1)
avr = np.average(pixelpos, 0, weights=hist2d_sm * hist2d_sm)
else:
hist2d_sm = hist2d
avr = np.zeros_like(self.time_resp)
# only used for monochrome error width
hist2d[hist2d <= threshold] = 0.
hist2d[hist2d > threshold] = 0.5 / (vertbins / (vertrange[-1] - vertrange[0]))
std = np.sum(hist2d, 0)
return avr, std, [self.time_resp, resp_y, hist2d_sm]
### calculates weighted avverage and resulting errors
def weighted_avg_and_std(self, values, weights):
average = np.average(values, axis=0, weights=weights)
variance = np.average((values - average) ** 2, axis=0, weights=weights)
return (average, np.sqrt(variance))
class CSV_log:
def __init__(self, fpath, name, headdict, noise_bounds):
self.file = fpath
self.name = name
self.headdict = headdict
self.data = self.readcsv(self.file)
logging.info('Processing:')
self.traces = self.find_traces(self.data)
self.roll, self.pitch, self.yaw = self.__analyze()
self.fig_resp = self.plot_all_resp([self.roll, self.pitch, self.yaw])
self.fig_noise = self.plot_all_noise([self.roll, self.pitch, self.yaw],noise_bounds)
def check_lims_list(self,lims):
if type(lims) is list:
l=np.array(lims)
if str(np.shape(l))=='(4L, 2L)':
ll=l[:,1]-l[:,0]
if np.sum(np.abs((ll-np.abs(ll))))==0:
return True
else:
logging.info('noise_bounds is no valid list')
return False
def plot_all_noise(self, traces, lims): #style='fancy' gives 2d hist for response
textsize = 7
rcParams.update({'font.size': 9})
logging.info('Making noise plot...')
fig = plt.figure('Noise plot: Log number: ' + self.headdict['logNum']+' '+self.file , figsize=(16, 8))
### gridspec devides window into 25 horizontal, 31 vertical fields
gs1 = GridSpec(25, 3 * 10+2, wspace=0.6, hspace=0.7, left=0.04, right=1., bottom=0.05, top=0.97)
max_noise_gyro = np.max([traces[0].noise_gyro['max'],traces[1].noise_gyro['max'],traces[2].noise_gyro['max']])+1.
max_noise_debug = np.max([traces[0].noise_debug['max'], traces[1].noise_debug['max'], traces[2].noise_debug['max']])+1.
max_noise_d = np.max([traces[0].noise_d['max'], traces[1].noise_d['max'], traces[2].noise_d['max']])+1.
meanspec = np.array([traces[0].noise_gyro['hist2d_sm'].mean(axis=1).flatten(),
traces[1].noise_gyro['hist2d_sm'].mean(axis=1).flatten(),
traces[2].noise_gyro['hist2d_sm'].mean(axis=1).flatten()],dtype=np.float64)
thresh = 100.
mask = traces[0].to_mask(traces[0].noise_gyro['freq_axis'].clip(thresh-1e-9,thresh))
meanspec_max = np.max(meanspec*mask[:-1])
if not self.check_lims_list(lims):
lims=np.array([[1,max_noise_gyro],[1, max_noise_debug], [1, max_noise_d], [0,meanspec_max*1.5]])
if lims[0,1] == 1:
lims[0,1]=100.
if lims[1, 1] == 1:
lims[1, 1]=100.
if lims[2, 1] == 1:
lims[2, 1]=100.
else:
lims=np.array(lims)
cax_gyro = plt.subplot(gs1[0, 0:7])
cax_debug = plt.subplot(gs1[0, 8:15])
cax_d = plt.subplot(gs1[0, 16:23])
cmap='viridis'
axes_gyro = []
axes_debug = []
axes_d = []
axes_trans = []
for i, tr in enumerate(traces):
if tr.noise_gyro['freq_axis'][-1]>1000:
pltlim = [0,1000]
else:
pltlim = [tr.noise_gyro['freq_axis'][-0],tr.noise_gyro['freq_axis'][-1]]
# gyro plots
ax0 = plt.subplot(gs1[1+i*8:1+i*8+8 , 0:7])
if len(axes_gyro):
axes_gyro[0].get_shared_x_axes().join(axes_gyro[0], ax0)
axes_gyro.append(ax0)
ax0.set_title('gyro '+tr.name, y=0.88, color='w')
pc0 = plt.pcolormesh(tr.noise_gyro['throt_axis'], tr.noise_gyro['freq_axis'], tr.noise_gyro['hist2d_sm']+1.,norm=colors.LogNorm(vmin=lims[0,0],vmax=lims[0,1]),cmap=cmap)
ax0.set_ylabel('frequency in Hz')
ax0.grid()
ax0.set_ylim(pltlim)
if i < 2:
plt.setp(ax0.get_xticklabels(), visible=False)
else:
ax0.set_xlabel('throttle in %')
fig.colorbar(pc0, cax_gyro, orientation='horizontal')
cax_gyro.xaxis.set_ticks_position('top')
cax_gyro.xaxis.set_tick_params(pad=-0.5)
if max_noise_gyro == 1.:
ax0.text(0.5, 0.5, 'no gyro[' + str(i) + '] trace found!\n',
horizontalalignment='center', verticalalignment='center',
transform=ax0.transAxes, fontdict={'color': 'white'})
# debug plots
ax1 = plt.subplot(gs1[1+i*8:1+i*8+8 , 8:15])
if len(axes_debug):
axes_debug[0].get_shared_x_axes().join(axes_debug[0], ax1)
axes_debug.append(ax1)
ax1.set_title('debug ' + tr.name, y=0.88, color='w')
pc1 = plt.pcolormesh(tr.noise_debug['throt_axis'],tr.noise_debug['freq_axis'], tr.noise_debug['hist2d_sm']+1., norm=colors.LogNorm(vmin=lims[1,0],vmax=lims[1,1]),cmap=cmap)
ax1.set_ylabel('frequency in Hz')
ax1.grid()
ax1.set_ylim(pltlim)
if i<2:
plt.setp(ax1.get_xticklabels(), visible=False)
else:
ax1.set_xlabel('throttle in %')
fig.colorbar(pc1, cax_debug, orientation='horizontal')
cax_debug.xaxis.set_ticks_position('top')
cax_debug.xaxis.set_tick_params(pad=-0.5)
if max_noise_debug==1.:
ax1.text(0.5, 0.5, 'no debug['+str(i)+'] trace found!\n'
'To get transmission of\n'
'- all filters: set debug_mode = NOTCH\n'
'- LPF only: set debug_mode = GYRO', horizontalalignment='center', verticalalignment = 'center',
transform = ax1.transAxes,fontdict={'color': 'white'})
if i<2:
# dterm plots
ax2 = plt.subplot(gs1[1 + i * 8:1 + i * 8 + 8, 16:23])
if len(axes_d):
axes_d[0].get_shared_x_axes().join(axes_d[0], ax2)
axes_d.append(ax2)
ax2.set_title('D-term ' + tr.name, y=0.88, color='w')
pc2 = plt.pcolormesh(tr.noise_d['throt_axis'], tr.noise_d['freq_axis'], tr.noise_d['hist2d_sm']+1., norm=colors.LogNorm(vmin=lims[2,0],vmax=lims[2,1]),cmap=cmap)
ax2.set_ylabel('frequency in Hz')
ax2.grid()
ax2.set_ylim(pltlim)
plt.setp(ax2.get_xticklabels(), visible=False)
fig.colorbar(pc2, cax_d, orientation='horizontal')
cax_d.xaxis.set_ticks_position('top')
cax_d.xaxis.set_tick_params(pad=-0.5)
if max_noise_d == 1.:
ax2.text(0.5, 0.5, 'no D[' + str(i) + '] trace found!\n',
horizontalalignment='center', verticalalignment='center',
transform=ax2.transAxes, fontdict={'color': 'white'})
else:
# throttle plots
ax21 = plt.subplot(gs1[1 + i * 8:1 + i * 8 + 4, 16:23])
ax22 = plt.subplot(gs1[1 + i * 8 + 5:1 + i * 8 + 8, 16:23])
ax21.bar(tr.throt_scale[:-1], tr.throt_hist*100., width=1.,align='edge', color='black', alpha=0.2, label='throttle distribution')
axes_d[0].get_shared_x_axes().join(axes_d[0], ax21)
ax21.vlines(self.headdict['tpa_percent'], 0., 100., label='tpa', colors='red', alpha=0.5)
ax21.grid()
ax21.set_ylim([0., np.max(tr.throt_hist) * 100. * 1.1])
ax21.set_xlabel('throttle in %')
ax21.set_ylabel('usage %')
ax21.set_xlim([0.,100.])
handles, labels = ax21.get_legend_handles_labels()
ax21.legend(handles[::-1], labels[::-1])
ax22.fill_between(tr.time, 0., tr.throttle, label='throttle input', facecolors='black', alpha=0.2)
ax22.hlines(self.headdict['tpa_percent'],tr.time[0], tr.time[-1], label='tpa', colors='red', alpha=0.5)
ax22.set_ylabel('throttle in %')
ax22.legend()
ax22.grid()
ax22.set_ylim([0.,100.])
ax22.set_xlim([tr.time[0],tr.time[-1]])
ax22.set_xlabel('time in s')
# transmission plots
ax3 = plt.subplot(gs1[1+i*8:1+i*8+8 , 24:30])
if len(axes_trans):
axes_trans[0].get_shared_x_axes().join(axes_trans[0], ax3)
axes_trans.append(ax3)
ax3.fill_between(tr.noise_gyro['freq_axis'][:-1], 0, meanspec[i], label=tr.name + ' gyro noise', alpha=0.2)
ax3.set_ylim(lims[3])
ax3.set_ylabel(tr.name+' gyro noise a.u.')
ax3.grid()
ax3r = plt.twinx(ax3)
ax3r.plot(tr.noise_gyro['freq_axis'][:-1], tr.filter_trans*100., label=tr.name + ' filter transmission')
ax3r.set_ylabel('transmission in %')
ax3r.set_ylim([0., 100.])
ax3r.set_xlim([tr.noise_gyro['freq_axis'][0],tr.noise_gyro['freq_axis'][-2]])
lines, labels = ax3.get_legend_handles_labels()
lines2, labels2 = ax3r.get_legend_handles_labels()
ax3r.legend(lines+lines2, labels+labels2, loc=1)
if i < 2:
plt.setp(ax3.get_xticklabels(), visible=False)
else:
ax3.set_xlabel('frequency in hz')
meanfreq = 1./(traces[0].time[1]-traces[0].time[0])
ax4 = plt.subplot(gs1[12, -1])
t = Version+"| Betaflight: Version "+self.headdict['version']+' | Craftname: '+self.headdict['craftName']+\
' | meanFreq: '+str(int(meanfreq))+' | rcRate/Expo: '+self.headdict['rcRate']+'/'+ self.headdict['rcExpo']+'\nrcYawRate/Expo: '+self.headdict['rcYawRate']+'/' \
+self.headdict['rcYawExpo']+' | deadBand: '+self.headdict['deadBand']+' | yawDeadBand: '+self.headdict['yawDeadBand'] \
+' | Throttle min/tpa/max: ' + self.headdict['minThrottle']+'/'+self.headdict['tpa_breakpoint']+'/'+self.headdict['maxThrottle'] \
+ ' | dynThrPID: ' + self.headdict['dynThrottle']+ '| D-TermSP: ' + self.headdict['dTermSetPoint']+'| vbatComp: ' + self.headdict['vbatComp']+' | debug '+ self.headdict['debug_mode']
ax4.text(0, 0, t, ha='left', va='center', rotation=90, color='grey', alpha=0.5, fontsize=textsize)
ax4.axis('off')
ax5l = plt.subplot(gs1[:1, 24:27])
ax5r = plt.subplot(gs1[:1, 27:30])
ax5l.axis('off')
ax5r.axis('off')
filt_settings_l = 'G lpf type: '+self.headdict['gyro_lpf']+' at '+self.headdict['gyro_lowpass_hz']+'\n'+\
'G notch at: '+self.headdict['gyro_notch_hz']+' cut '+self.headdict['gyro_notch_cutoff']+'\n'\
'gyro lpf 2: '+self.headdict['gyro_lowpass_type']
filt_settings_r = '| D lpf type: ' + self.headdict['dterm_filter_type'] + ' at ' + self.headdict['dterm_lpf_hz'] + '\n' + \
'| D notch at: ' + self.headdict['dterm_notch_hz'] + ' cut ' + self.headdict['dterm_notch_cutoff'] + '\n' + \
'| Yaw lpf at: ' + self.headdict['yaw_lpf_hz']
ax5l.text(0, 0, filt_settings_l, ha='left', fontsize=textsize)
ax5r.text(0, 0, filt_settings_r, ha='left', fontsize=textsize)
logging.info('Saving as image...')
plt.savefig(self.file[:-13] + self.name + '_' + str(self.headdict['logNum'])+'_noise.png')
return fig
def plot_all_resp(self, traces, style='ra'): # style='raw' for response vs. time in color plot
textsize = 7
titelsize = 10
rcParams.update({'font.size': 9})
logging.info('Making PID plot...')
fig = plt.figure('Response plot: Log number: ' + self.headdict['logNum']+' '+self.file , figsize=(16, 8))
### gridspec devides window into 24 horizontal, 3*10 vertical fields
gs1 = GridSpec(24, 3 * 10, wspace=0.6, hspace=0.7, left=0.04, right=1., bottom=0.05, top=0.97)
for i, tr in enumerate(traces):
ax0 = plt.subplot(gs1[0:6, i*10:i*10+9])
plt.title(tr.name)
plt.plot(tr.time, tr.gyro, label=tr.name + ' gyro')
plt.plot(tr.time, tr.input, label=tr.name + ' loop input')
plt.ylabel('degrees/second')
ax0.get_yaxis().set_label_coords(-0.1, 0.5)
plt.grid()
tracelim = np.max([np.abs(tr.gyro),np.abs(tr.input)])
plt.ylim([-tracelim*1.1, tracelim*1.1])
plt.legend(loc=1)
plt.setp(ax0.get_xticklabels(), visible=False)
ax1 = plt.subplot(gs1[6:8, i*10:i*10+9], sharex=ax0)
plt.hlines(self.headdict['tpa_percent'], tr.time[0], tr.time[-1], label='tpa', colors='red', alpha=0.5)
plt.fill_between(tr.time, 0., tr.throttle, label='throttle', color='grey', alpha=0.2)
plt.ylabel('throttle %')
ax1.get_yaxis().set_label_coords(-0.1, 0.5)
plt.grid()
plt.xlim([tr.time[0], tr.time[-1]])
plt.ylim([0, 100])
plt.legend(loc=1)
plt.xlabel('log time in s')
if style =='raw':
###old raw data plot.
plt.setp(ax1.get_xticklabels(), visible=False)
ax2 = plt.subplot(gs1[9:16, i*10:i*10+9], sharex=ax0)
plt.pcolormesh(tr.avr_t, tr.time_resp, np.transpose(tr.spec_sm), vmin=0, vmax=2.)
plt.ylabel('response time in s')
ax2.get_yaxis().set_label_coords(-0.1, 0.5)
plt.xlabel('log time in s')
plt.xlim([tr.avr_t[0], tr.avr_t[-1]])
else:
###response vs throttle plot. more useful.
ax2 = plt.subplot(gs1[9:16, i * 10:i * 10 + 9])
plt.title(tr.name + ' response', y=0.88, color='w')
#plt.pcolormesh([tr.thr_response['throt_scale'], tr.time_resp], tr.thr_response['hist2d_norm'], vmin=0., vmax=2.)
plt.pcolormesh(tr.thr_response['hist2d_norm'], vmin=0., vmax=2.)
plt.ylabel('response time in s')
ax2.get_yaxis().set_label_coords(-0.1, 0.5)
plt.xlabel('throttle in %')
plt.xlim([0.,100.])
theCM = plt.cm.get_cmap('Blues')
theCM._init()
alphas = np.abs(np.linspace(0., 0.5, theCM.N, dtype=np.float64))
theCM._lut[:-3,-1] = alphas
ax3 = plt.subplot(gs1[17:, i*10:i*10+9])
plt.contourf(*tr.resp_low[2], cmap=theCM, linestyles=None, antialiased=True, levels=np.linspace(0,1,20, dtype=np.float64))
plt.plot(tr.time_resp, tr.resp_low[0],
label=tr.name + ' step response ' + '(<' + str(int(Trace.threshold)) + ') '
+ ' PID ' + self.headdict[tr.name + 'PID'])
if tr.high_mask.sum() > 0:
theCM = plt.cm.get_cmap('Oranges')
theCM._init()
alphas = np.abs(np.linspace(0., 0.5, theCM.N, dtype=np.float64))
theCM._lut[:-3,-1] = alphas
plt.contourf(*tr.resp_high[2], cmap=theCM, linestyles=None, antialiased=True, levels=np.linspace(0,1,20, dtype=np.float64))
plt.plot(tr.time_resp, tr.resp_high[0],
label=tr.name + ' step response ' + '(>' + str(int(Trace.threshold)) + ') '
+ ' PID ' + self.headdict[tr.name + 'PID'])
plt.xlim([-0.001,0.501])
plt.legend(loc=1)
plt.ylim([0., 2])
plt.ylabel('strength')
ax3.get_yaxis().set_label_coords(-0.1, 0.5)
plt.xlabel('response time in s')
plt.grid()
meanfreq = 1./(traces[0].time[1]-traces[0].time[0])
ax4 = plt.subplot(gs1[12, -1])
t = Version+" | Betaflight: Version "+self.headdict['version']+' | Craftname: '+self.headdict['craftName']+\
' | meanFreq: '+str(int(meanfreq))+' | rcRate/Expo: '+self.headdict['rcRate']+'/'+ self.headdict['rcExpo']+'\nrcYawRate/Expo: '+self.headdict['rcYawRate']+'/' \
+self.headdict['rcYawExpo']+' | deadBand: '+self.headdict['deadBand']+' | yawDeadBand: '+self.headdict['yawDeadBand'] \
+' | Throttle min/tpa/max: ' + self.headdict['minThrottle']+'/'+self.headdict['tpa_breakpoint']+'/'+self.headdict['maxThrottle'] \
+ ' | dynThrPID: ' + self.headdict['dynThrottle']+ '| D-TermSP: ' + self.headdict['dTermSetPoint']+'| vbatComp: ' + self.headdict['vbatComp']
plt.text(0, 0, t, ha='left', va='center', rotation=90, color='grey', alpha=0.5, fontsize=textsize)
ax4.axis('off')
logging.info('Saving as image...')
plt.savefig(self.file[:-13] + self.name + '_' + str(self.headdict['logNum'])+'_response.png')
return fig
def __analyze(self):
analyzed = []
for t in self.traces:
logging.info(t['name'] + '... ')
analyzed.append(Trace(t))
return analyzed
def readcsv(self, fpath):
logging.info('Reading: Log '+str(self.headdict['logNum']))
datdic = {}
### keycheck for 'usecols' only reads usefull traces, uncommend if needed
wanted = ['time (us)',
'rcCommand[0]', 'rcCommand[1]', 'rcCommand[2]', 'rcCommand[3]',
'axisP[0]','axisP[1]','axisP[2]',
'axisI[0]', 'axisI[1]', 'axisI[2]',
'axisD[0]', 'axisD[1]','axisD[2]',
'gyroADC[0]', 'gyroADC[1]', 'gyroADC[2]',
'gyroData[0]', 'gyroData[1]', 'gyroData[2]',
'ugyroADC[0]', 'ugyroADC[1]', 'ugyroADC[2]',
#'accSmooth[0]','accSmooth[1]', 'accSmooth[2]',
'debug[0]', 'debug[1]', 'debug[2]','debug[3]',
#'motor[0]', 'motor[1]', 'motor[2]', 'motor[3]',
#'energyCumulative (mAh)','vbatLatest (V)', 'amperageLatest (A)'
]
data = read_csv(fpath, header=0, skipinitialspace=1, usecols=lambda k: k in wanted, dtype=np.float64)
datdic.update({'time_us': data['time (us)'].values * 1e-6})
datdic.update({'throttle': data['rcCommand[3]'].values})
for i in ['0', '1', '2']:
datdic.update({'rcCommand' + i: data['rcCommand['+i+']'].values})
#datdic.update({'PID loop in' + i: data['axisP[' + i + ']'].values})
try:
datdic.update({'debug' + i: data['debug[' + i + ']'].values})
except:
logging.warning('No debug['+str(i)+'] trace found!')
datdic.update({'debug' + i: np.zeros_like(data['rcCommand[' + i + ']'].values)})
# get P trace (including case of missing trace)
try:
datdic.update({'PID loop in' + i: data['axisP[' + i + ']'].values})
except:
logging.warning('No P['+str(i)+'] trace found!')
datdic.update({'PID loop in' + i: np.zeros_like(data['rcCommand[' + i + ']'].values)})
try:
datdic.update({'d_err'+i: data['axisD[' + i+']'].values})
except:
logging.warning('No D['+str(i)+'] trace found!')
datdic.update({'d_err' + i: np.zeros_like(data['rcCommand[' + i + ']'].values)})
try:
datdic.update({'I_term'+i: data['axisI[' + i+']'].values})
except:
if i<2:
logging.warning('No I['+str(i)+'] trace found!')
datdic.update({'I_term' + i: np.zeros_like(data['rcCommand[' + i + ']'].values)})
datdic.update({'PID sum' + i: datdic['PID loop in'+i]+datdic['I_term'+i]+datdic['d_err'+i]})
if 'gyroADC[0]' in data.keys():
datdic.update({'gyroData' + i: data['gyroADC[' + i+']'].values})
elif 'gyroData[0]' in data.keys():
datdic.update({'gyroData' + i: data['gyroData[' + i+']'].values})
elif 'ugyroADC[0]' in data.keys():
datdic.update({'gyroData' + i: data['ugyroADC[' + i+']'].values})
else:
logging.warning('No gyro trace found!')
return datdic
def find_traces(self, dat):
time = self.data['time_us']
throttle = dat['throttle']
throt = ((throttle - 1000.) / (float(self.headdict['maxThrottle']) - 1000.)) * 100.
traces = [{'name':'roll'},{'name':'pitch'},{'name':'yaw'}]
for i, dic in enumerate(traces):
dic.update({'time':time})
dic.update({'p_err':dat['PID loop in'+str(i)]})
dic.update({'rcinput': dat['rcCommand' + str(i)]})
dic.update({'gyro':dat['gyroData'+str(i)]})
dic.update({'PIDsum':dat['PID sum'+str(i)]})
dic.update({'d_err': dat['d_err' + str(i)]})
dic.update({'debug': dat['debug' + str(i)]})
if 'KISS' in self.headdict['fwType']:
dic.update({'P': 1.})
self.headdict.update({'tpa_percent': 0.})
elif 'Raceflight' in self.headdict['fwType']:
dic.update({'P': 1.})
self.headdict.update({'tpa_percent': 0.})
else:
dic.update({'P':float((self.headdict[dic['name']+'PID']).split(',')[0])})
self.headdict.update({'tpa_percent': (float(self.headdict['tpa_breakpoint']) - 1000.) / 10.})
dic.update({'throttle':throt})
return traces
class BB_log:
def __init__(self, log_file_path, name, blackbox_decode, show, noise_bounds):
self.blackbox_decode_bin_path = blackbox_decode
self.tmp_dir = os.path.join(os.path.dirname(log_file_path), name)
if not os.path.isdir(self.tmp_dir):
os.makedirs(self.tmp_dir)
self.name = name
self.show=show
self.noise_bounds=noise_bounds
self.loglist = self.decode(log_file_path)
self.heads = self.beheader(self.loglist)
self.figs = self._csv_iter(self.heads)
self.deletejunk(self.loglist)
def deletejunk(self, loglist):
for l in loglist:
os.remove(l)
os.remove(l[:-3]+'01.csv')
try:
os.remove(l[:-3]+'01.event')
except:
logging.warning('No .event file of '+l+' found.')
return
def _csv_iter(self, heads):
figs = []
for h in heads:
analysed = CSV_log(h['tempFile'][:-3]+'01.csv', self.name, h, self.noise_bounds)
#figs.append([analysed.fig_resp,analysed.fig_noise])
if self.show!='Y':
plt.cla()
plt.clf()
return figs
def beheader(self, loglist):
heads = []
for i, bblog in enumerate(loglist):
log = open(os.path.join(self.tmp_dir, bblog), 'rb')
lines = log.readlines()
### in case info is not provided by log, empty str is printed in plot
headsdict = {'tempFile' :'',
'dynThrottle' :'',
'craftName' :'',
'fwType': '',
'version' :'',
'date' :'',
'rcRate' :'',
'rcExpo' :'',
'rcYawExpo' :'',
'rcYawRate' :'',
'rates' :'',
'rollPID' :'',
'pitchPID' :'',
'yawPID' :'',
'deadBand' :'',
'yawDeadBand' :'',
'logNum' :'',
'tpa_breakpoint':'0',
'minThrottle':'',
'maxThrottle': '',
'tpa_percent':'',
'dTermSetPoint':'',
'vbatComp':'',
'gyro_lpf':'',
'gyro_lowpass_type':'',
'gyro_lowpass_hz':'',
'gyro_notch_hz':'',
'gyro_notch_cutoff':'',
'dterm_filter_type':'',
'dterm_lpf_hz':'',
'yaw_lpf_hz':'',
'dterm_notch_hz':'',
'dterm_notch_cutoff':'',
'debug_mode':''
}
### different versions of fw have different names for the same thing.
translate_dic={'dynThrPID:':'dynThrottle',
'Craft name:':'craftName',
'Firmware type:':'fwType',
'Firmware revision:':'version',
'Firmware date:':'fwDate',
'rcRate:':'rcRate', 'rc_rate:':'rcRate',
'rcExpo:':'rcExpo', 'rc_expo:':'rcExpo',
'rcYawExpo:':'rcYawExpo', 'rc_expo_yaw:':'rcYawExpo',
'rcYawRate:':'rcYawRate', 'rc_rate_yaw:':'rcYawRate',
'rates:':'rates',
'rollPID:':'rollPID',
'pitchPID:':'pitchPID',
'yawPID:':'yawPID',
' deadband:':'deadBand',
'yaw_deadband:':'yawDeadBand',
'tpa_breakpoint:':'tpa_breakpoint',
'minthrottle:':'minThrottle',
'maxthrottle:':'maxThrottle',
'dtermSetpointWeight:':'dTermSetPoint','dterm_setpoint_weight:':'dTermSetPoint',
'vbat_pid_compensation:':'vbatComp','vbat_pid_gain:':'vbatComp',
'gyro_lpf:':'gyro_lpf',
'gyro_lowpass_type:':'gyro_lowpass_type',
'gyro_lowpass_hz:':'gyro_lowpass_hz','gyro_lpf_hz:':'gyro_lowpass_hz',
'gyro_notch_hz:':'gyro_notch_hz',
'gyro_notch_cutoff:':'gyro_notch_cutoff',
'dterm_filter_type:':'dterm_filter_type',
'dterm_lpf_hz:':'dterm_lpf_hz',
'yaw_lpf_hz:':'yaw_lpf_hz',
'dterm_notch_hz:':'dterm_notch_hz',
'dterm_notch_cutoff:':'dterm_notch_cutoff',
'debug_mode:':'debug_mode'
}
headsdict['tempFile'] = bblog
headsdict['logNum'] = str(i)
### check for known keys and translate to useful ones.
for raw_line in lines:
l = raw_line.decode('latin-1')
for k in translate_dic.keys():
if k in l:
val =l.split(':')[-1]
headsdict.update({translate_dic[k]:val[:-1]})
heads.append(headsdict)
return heads
def decode(self, fpath):
"""Splits out one BBL per recorded session and converts each to CSV."""
with open(fpath, 'rb') as binary_log_view:
content = binary_log_view.read()
# The first line of the overall BBL file re-appears at the beginning
# of each recorded session.
try:
first_newline_index = content.index(str('\n').encode('utf8'))
except ValueError as e:
raise ValueError(
'No newline in %dB of log data from %r.'
% (len(content), fpath),
e)
firstline = content[:first_newline_index + 1]
split = content.split(firstline)
bbl_sessions = []
for i in range(len(split)):
path_root, path_ext = os.path.splitext(os.path.basename(fpath))
temp_path = os.path.join(
self.tmp_dir, '%s_temp%d%s' % (path_root, i, path_ext))
with open(temp_path, 'wb') as newfile:
newfile.write(firstline+split[i])
bbl_sessions.append(temp_path)
loglist = []
for bbl_session in bbl_sessions:
size_bytes = os.path.getsize(os.path.join(self.tmp_dir, bbl_session))
if size_bytes > LOG_MIN_BYTES:
try:
msg = subprocess.check_call([self.blackbox_decode_bin_path, bbl_session])
loglist.append(bbl_session)
except:
logging.error(
'Error in Blackbox_decode of %r' % bbl_session, exc_info=True)
else:
# There is often a small bogus session at the start of the file.
logging.warning(
'Ignoring BBL session %r, %dB < %dB.'
% (bbl_session, size_bytes, LOG_MIN_BYTES))
os.remove(bbl_session)
return loglist
def run_analysis(log_file_path, plot_name, blackbox_decode, show, noise_bounds):
test = BB_log(log_file_path, plot_name, blackbox_decode, show, noise_bounds)
logging.info('Analysis complete, showing plot. (Close plot to exit.)')
def strip_quotes(filepath):
"""Strips single or double quotes and extra whitespace from a string."""
return filepath.strip().strip("'").strip('"')
def clean_path(path):
return os.path.abspath(os.path.expanduser(strip_quotes(path)))
if __name__ == "__main__":
logging.basicConfig(
format='%(levelname)s %(asctime)s %(filename)s:%(lineno)s: %(message)s',
level=logging.INFO)
parser = argparse.ArgumentParser()
parser.add_argument(
'-l', '--log', action='append',
help='BBL log file(s) to analyse. Omit for interactive prompt.')
parser.add_argument('-n', '--name', default='tmp', help='Plot name.')
parser.add_argument(
'--blackbox_decode',
default=os.path.join(os.getcwd(), 'blackbox_decode'),
help='Path to Blackbox_decode.exe.')
parser.add_argument('-s', '--show', default='Y', help='Y = show plot window when done.\nN = Do not. \nDefault = Y')
parser.add_argument('-nb', '--noise_bounds', default='[[1.,10.1],[1.,100.],[1.,100.],[0.,4.]]', help='bounds of plots in noise analysis. use "auto" for autoscaling. \n default=[[1.,10.1],[1.,100.],[1.,100.],[0.,4.]]')
args = parser.parse_args()
blackbox_decode_path = clean_path(args.blackbox_decode)
try:
args.noise_bounds = eval(args.noise_bounds)
except:
args.noise_bounds = args.noise_bounds
if not os.path.isfile(blackbox_decode_path):
parser.error(
('Could not find Blackbox_decode.exe (used to generate CSVs from '
'your BBL file) at %s. You may need to install it from '
'https://github.com/cleanflight/blackbox-tools/releases.')
% blackbox_decode_path)
logging.info('Decoding with %r' % blackbox_decode_path)
logging.info(Version)
logging.info('Hello Pilot!')
if args.log:
for log_path in args.log:
run_analysis(clean_path(log_path), args.name, args.blackbox_decode, args.show, args.noise_bounds)
if args.show.upper() == 'Y':
plt.show()
else:
plt.cla()
plt.clf()
else:
while True: