-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
83 lines (64 loc) · 2.02 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
from __future__ import division, print_function
# coding=utf-8
import sys
import os
import glob
import re
import numpy as np
# Keras
import numpy as np
from keras.preprocessing import image
import tensorflow as tf
# Flask utils
from flask import Flask, redirect, url_for, request, render_template
from werkzeug.utils import secure_filename
from gevent.pywsgi import WSGIServer
# Define a flask app
app = Flask(__name__)
# Model saved with Keras model.save()
# Load your trained model
try:
model =tf.keras.models.load_model('New_model')
except:
print("model not loaded")
# model._make_predict_function() # Necessary
# print('Model loaded. Start serving...')
# You can also use pretrained model from Keras
# Check https://keras.io/applications/
#from keras.applications.resnet50 import ResNet50
#model = ResNet50(weights='imagenet')
#model.save('')
print('Model loaded. Check http://127.0.0.1:5000/')
def model_predict(img_path, model):
test_image = image.load_img(img_path, target_size=(64, 64))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis = 0)
result = model.predict(test_image)
if result[0][0] == 1:
prediction = 'covid'
else:
prediction = 'normal'
print(prediction)
return prediction
@app.route('/', methods=['GET'])
def index():
# Main page
return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
if request.method == 'POST':
# Get the file from post request
f = request.files['file']
# Save the file to ./uploads
basepath = os.path.dirname(__file__)
file_path = os.path.join(
basepath, 'uploads', secure_filename(f.filename))
f.save(file_path)
# Make prediction
preds = model_predict(file_path, model)
# Process your result for human
# pred_class = preds.argmax(axis=-1) # Simple argmax
return preds
return None
if __name__ == '__main__':
app.run(debug=True)