forked from xiamx/fastText
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
96 lines (84 loc) · 2.15 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2016-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree. An additional grant
# of patent rights can be found in the PATENTS file in the same directory.
#
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
from scipy import stats
import os
import math
import argparse
def compat_splitting(line):
return line.decode('utf8').split()
def similarity(v1, v2):
n1 = np.linalg.norm(v1)
n2 = np.linalg.norm(v2)
return np.dot(v1, v2) / n1 / n2
parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument(
'--model',
'-m',
dest='modelPath',
action='store',
required=True,
help='path to model'
)
parser.add_argument(
'--data',
'-d',
dest='dataPath',
action='store',
required=True,
help='path to data'
)
args = parser.parse_args()
vectors = {}
fin = open(args.modelPath, 'rb')
for _, line in enumerate(fin):
try:
tab = compat_splitting(line)
vec = np.array(tab[1:], dtype=float)
word = tab[0]
if np.linalg.norm(vec) == 0:
continue
if not word in vectors:
vectors[word] = vec
except ValueError:
continue
except UnicodeDecodeError:
continue
fin.close()
mysim = []
gold = []
drop = 0.0
nwords = 0.0
fin = open(args.dataPath, 'rb')
for line in fin:
tline = compat_splitting(line)
word1 = tline[0].lower()
word2 = tline[1].lower()
nwords = nwords + 1.0
if (word1 in vectors) and (word2 in vectors):
v1 = vectors[word1]
v2 = vectors[word2]
d = similarity(v1, v2)
mysim.append(d)
gold.append(float(tline[2]))
else:
drop = drop + 1.0
fin.close()
corr = stats.spearmanr(mysim, gold)
dataset = os.path.basename(args.dataPath)
print(
"{0:20s}: {1:2.0f} (OOV: {2:2.0f}%)"
.format(dataset, corr[0] * 100, math.ceil(drop / nwords * 100.0))
)