Skip to content

Latest commit

 

History

History
436 lines (338 loc) · 12.8 KB

webflux-websocket.adoc

File metadata and controls

436 lines (338 loc) · 12.8 KB

WebSockets

This part of the reference documentation covers support for reactive-stack WebSocket messaging.

WebSocket API

The Spring Framework provides a WebSocket API that you can use to write client- and server-side applications that handle WebSocket messages.

Server

To create a WebSocket server, you can first create a WebSocketHandler. The following example shows how to do so:

Java
import org.springframework.web.reactive.socket.WebSocketHandler;
import org.springframework.web.reactive.socket.WebSocketSession;

public class MyWebSocketHandler implements WebSocketHandler {

	@Override
	public Mono<Void> handle(WebSocketSession session) {
		// ...
	}
}
Kotlin
import org.springframework.web.reactive.socket.WebSocketHandler
import org.springframework.web.reactive.socket.WebSocketSession

class MyWebSocketHandler : WebSocketHandler {

	override fun handle(session: WebSocketSession): Mono<Void> {
		// ...
	}
}

Then you can map it to a URL and add a WebSocketHandlerAdapter, as the following example shows:

Java
@Configuration
class WebConfig {

	@Bean
	public HandlerMapping handlerMapping() {
		Map<String, WebSocketHandler> map = new HashMap<>();
		map.put("/path", new MyWebSocketHandler());
		int order = -1; // before annotated controllers

		return new SimpleUrlHandlerMapping(map, order);
	}

	@Bean
	public WebSocketHandlerAdapter handlerAdapter() {
		return new WebSocketHandlerAdapter();
	}
}
Kotlin
@Configuration
class WebConfig {

	@Bean
	fun handlerMapping(): HandlerMapping {
		val map = mapOf("/path" to MyWebSocketHandler())
		val order = -1 // before annotated controllers

		return SimpleUrlHandlerMapping(map, order)
	}

	@Bean
	fun handlerAdapter() =  WebSocketHandlerAdapter()
}

WebSocketHandler

The handle method of WebSocketHandler takes WebSocketSession and returns Mono<Void> to indicate when application handling of the session is complete. The session is handled through two streams, one for inbound and one for outbound messages. The following table describes the two methods that handle the streams:

WebSocketSession method Description

Flux<WebSocketMessage> receive()

Provides access to the inbound message stream and completes when the connection is closed.

Mono<Void> send(Publisher<WebSocketMessage>)

Takes a source for outgoing messages, writes the messages, and returns a Mono<Void> that completes when the source completes and writing is done.

A WebSocketHandler must compose the inbound and outbound streams into a unified flow and return a Mono<Void> that reflects the completion of that flow. Depending on application requirements, the unified flow completes when:

  • Either the inbound or the outbound message stream completes.

  • The inbound stream completes (that is, the connection closed), while the outbound stream is infinite.

  • At a chosen point, through the close method of WebSocketSession.

When inbound and outbound message streams are composed together, there is no need to check if the connection is open, since Reactive Streams signals terminate activity. The inbound stream receives a completion or error signal, and the outbound stream receives a cancellation signal.

The most basic implementation of a handler is one that handles the inbound stream. The following example shows such an implementation:

Java
class ExampleHandler implements WebSocketHandler {

	@Override
	public Mono<Void> handle(WebSocketSession session) {
		return session.receive()			// (1)
				.doOnNext(message -> {
					// ...					// (2)
				})
				.concatMap(message -> {
					// ...					// (3)
				})
				.then();					// (4)
	}
}
  1. Access the stream of inbound messages.

  2. Do something with each message.

  3. Perform nested asynchronous operations that use the message content.

  4. Return a Mono<Void> that completes when receiving completes.

Kotlin
class ExampleHandler : WebSocketHandler {

	override fun handle(session: WebSocketSession): Mono<Void> {
		return session.receive()            // (1)
				.doOnNext {
					// ...					// (2)
				}
				.concatMap {
					// ...					// (3)
				}
				.then()                     // (4)
	}
}
  1. Access the stream of inbound messages.

  2. Do something with each message.

  3. Perform nested asynchronous operations that use the message content.

  4. Return a Mono<Void> that completes when receiving completes.

Tip
For nested, asynchronous operations, you may need to call message.retain() on underlying servers that use pooled data buffers (for example, Netty). Otherwise, the data buffer may be released before you have had a chance to read the data. For more background, see Data Buffers and Codecs.

The following implementation combines the inbound and outbound streams:

Java
class ExampleHandler implements WebSocketHandler {

	@Override
	public Mono<Void> handle(WebSocketSession session) {

		Flux<WebSocketMessage> output = session.receive()				// (1)
				.doOnNext(message -> {
					// ...
				})
				.concatMap(message -> {
					// ...
				})
				.map(value -> session.textMessage("Echo " + value));	// (2)

		return session.send(output);									// (3)
	}
}
  1. Handle the inbound message stream.

  2. Create the outbound message, producing a combined flow.

  3. Return a Mono<Void> that does not complete while we continue to receive.

Kotlin
class ExampleHandler : WebSocketHandler {

	override fun handle(session: WebSocketSession): Mono<Void> {

		val output = session.receive()                      // (1)
				.doOnNext {
					// ...
				}
				.concatMap {
					// ...
				}
				.map { session.textMessage("Echo $it") }    // (2)

		return session.send(output)                         // (3)
	}
}
  1. Handle the inbound message stream.

  2. Create the outbound message, producing a combined flow.

  3. Return a Mono<Void> that does not complete while we continue to receive.

Inbound and outbound streams can be independent and be joined only for completion, as the following example shows:

Java
class ExampleHandler implements WebSocketHandler {

	@Override
	public Mono<Void> handle(WebSocketSession session) {

		Mono<Void> input = session.receive()								(1)
				.doOnNext(message -> {
					// ...
				})
				.concatMap(message -> {
					// ...
				})
				.then();

		Flux<String> source = ... ;
		Mono<Void> output = session.send(source.map(session::textMessage));	(2)

		return Mono.zip(input, output).then();								(3)
	}
}
  1. Handle inbound message stream.

  2. Send outgoing messages.

  3. Join the streams and return a Mono<Void> that completes when either stream ends.

Kotlin
class ExampleHandler : WebSocketHandler {

	override fun handle(session: WebSocketSession): Mono<Void> {

		val input = session.receive()									// (1)
				.doOnNext {
					// ...
				}
				.concatMap {
					// ...
				}
				.then()

		val source: Flux<String> = ...
		val output = session.send(source.map(session::textMessage))		// (2)

		return Mono.zip(input, output).then()							// (3)
	}
}
  1. Handle inbound message stream.

  2. Send outgoing messages.

  3. Join the streams and return a Mono<Void> that completes when either stream ends.

DataBuffer

DataBuffer is the representation for a byte buffer in WebFlux. The Spring Core part of the reference has more on that in the section on Data Buffers and Codecs. The key point to understand is that on some servers like Netty, byte buffers are pooled and reference counted, and must be released when consumed to avoid memory leaks.

When running on Netty, applications must use DataBufferUtils.retain(dataBuffer) if they wish to hold on input data buffers in order to ensure they are not released, and subsequently use DataBufferUtils.release(dataBuffer) when the buffers are consumed.

Handshake

WebSocketHandlerAdapter delegates to a WebSocketService. By default, that is an instance of HandshakeWebSocketService, which performs basic checks on the WebSocket request and then uses RequestUpgradeStrategy for the server in use. Currently, there is built-in support for Reactor Netty, Tomcat, Jetty, and Undertow.

HandshakeWebSocketService exposes a sessionAttributePredicate property that allows setting a Predicate<String> to extract attributes from the WebSession and insert them into the attributes of the WebSocketSession.

Server Configation

The RequestUpgradeStrategy for each server exposes WebSocket-related configuration options available for the underlying WebSocket engine. The following example sets WebSocket options when running on Tomcat:

Java
@Configuration
class WebConfig {

	@Bean
	public WebSocketHandlerAdapter handlerAdapter() {
		return new WebSocketHandlerAdapter(webSocketService());
	}

	@Bean
	public WebSocketService webSocketService() {
		TomcatRequestUpgradeStrategy strategy = new TomcatRequestUpgradeStrategy();
		strategy.setMaxSessionIdleTimeout(0L);
		return new HandshakeWebSocketService(strategy);
	}
}
Kotlin
@Configuration
class WebConfig {

	@Bean
	fun handlerAdapter() =
			WebSocketHandlerAdapter(webSocketService())

	@Bean
	fun webSocketService(): WebSocketService {
		val strategy = TomcatRequestUpgradeStrategy().apply {
			setMaxSessionIdleTimeout(0L)
		}
		return HandshakeWebSocketService(strategy)
	}
}

Check the upgrade strategy for your server to see what options are available. Currently, only Tomcat and Jetty expose such options.

CORS

The easiest way to configure CORS and restrict access to a WebSocket endpoint is to have your WebSocketHandler implement CorsConfigurationSource and return a CorsConfiguraiton with allowed origins, headers, and other details. If you cannot do that, you can also set the corsConfigurations property on the SimpleUrlHandler to specify CORS settings by URL pattern. If both are specified, they are combined by using the combine method on CorsConfiguration.

Client

Spring WebFlux provides a WebSocketClient abstraction with implementations for Reactor Netty, Tomcat, Jetty, Undertow, and standard Java (that is, JSR-356).

Note
The Tomcat client is effectively an extension of the standard Java one with some extra functionality in the WebSocketSession handling to take advantage of the Tomcat-specific API to suspend receiving messages for back pressure.

To start a WebSocket session, you can create an instance of the client and use its execute methods:

Java
WebSocketClient client = new ReactorNettyWebSocketClient();

URI url = new URI("ws://localhost:8080/path");
client.execute(url, session ->
		session.receive()
				.doOnNext(System.out::println)
				.then());
Kotlin
val client = ReactorNettyWebSocketClient()

		val url = URI("ws://localhost:8080/path")
		client.execute(url) { session ->
			session.receive()
					.doOnNext(::println)
			.then()
		}

Some clients, such as Jetty, implement Lifecycle and need to be stopped and started before you can use them. All clients have constructor options related to configuration of the underlying WebSocket client.