This part of the reference documentation covers support for reactive-stack WebSocket messaging.
The Spring Framework provides a WebSocket API that you can use to write client- and server-side applications that handle WebSocket messages.
To create a WebSocket server, you can first create a WebSocketHandler
.
The following example shows how to do so:
import org.springframework.web.reactive.socket.WebSocketHandler;
import org.springframework.web.reactive.socket.WebSocketSession;
public class MyWebSocketHandler implements WebSocketHandler {
@Override
public Mono<Void> handle(WebSocketSession session) {
// ...
}
}
import org.springframework.web.reactive.socket.WebSocketHandler
import org.springframework.web.reactive.socket.WebSocketSession
class MyWebSocketHandler : WebSocketHandler {
override fun handle(session: WebSocketSession): Mono<Void> {
// ...
}
}
Then you can map it to a URL and add a WebSocketHandlerAdapter
, as the following example shows:
@Configuration
class WebConfig {
@Bean
public HandlerMapping handlerMapping() {
Map<String, WebSocketHandler> map = new HashMap<>();
map.put("/path", new MyWebSocketHandler());
int order = -1; // before annotated controllers
return new SimpleUrlHandlerMapping(map, order);
}
@Bean
public WebSocketHandlerAdapter handlerAdapter() {
return new WebSocketHandlerAdapter();
}
}
@Configuration
class WebConfig {
@Bean
fun handlerMapping(): HandlerMapping {
val map = mapOf("/path" to MyWebSocketHandler())
val order = -1 // before annotated controllers
return SimpleUrlHandlerMapping(map, order)
}
@Bean
fun handlerAdapter() = WebSocketHandlerAdapter()
}
The handle
method of WebSocketHandler
takes WebSocketSession
and returns Mono<Void>
to indicate when application handling of the session is complete. The session is handled
through two streams, one for inbound and one for outbound messages. The following table
describes the two methods that handle the streams:
WebSocketSession method |
Description |
---|---|
|
Provides access to the inbound message stream and completes when the connection is closed. |
|
Takes a source for outgoing messages, writes the messages, and returns a |
A WebSocketHandler
must compose the inbound and outbound streams into a unified flow and
return a Mono<Void>
that reflects the completion of that flow. Depending on application
requirements, the unified flow completes when:
-
Either the inbound or the outbound message stream completes.
-
The inbound stream completes (that is, the connection closed), while the outbound stream is infinite.
-
At a chosen point, through the
close
method ofWebSocketSession
.
When inbound and outbound message streams are composed together, there is no need to check if the connection is open, since Reactive Streams signals terminate activity. The inbound stream receives a completion or error signal, and the outbound stream receives a cancellation signal.
The most basic implementation of a handler is one that handles the inbound stream. The following example shows such an implementation:
class ExampleHandler implements WebSocketHandler {
@Override
public Mono<Void> handle(WebSocketSession session) {
return session.receive() // (1)
.doOnNext(message -> {
// ... // (2)
})
.concatMap(message -> {
// ... // (3)
})
.then(); // (4)
}
}
-
Access the stream of inbound messages.
-
Do something with each message.
-
Perform nested asynchronous operations that use the message content.
-
Return a
Mono<Void>
that completes when receiving completes.
class ExampleHandler : WebSocketHandler {
override fun handle(session: WebSocketSession): Mono<Void> {
return session.receive() // (1)
.doOnNext {
// ... // (2)
}
.concatMap {
// ... // (3)
}
.then() // (4)
}
}
-
Access the stream of inbound messages.
-
Do something with each message.
-
Perform nested asynchronous operations that use the message content.
-
Return a
Mono<Void>
that completes when receiving completes.
Tip
|
For nested, asynchronous operations, you may need to call message.retain() on underlying
servers that use pooled data buffers (for example, Netty). Otherwise, the data buffer may be
released before you have had a chance to read the data. For more background, see
Data Buffers and Codecs.
|
The following implementation combines the inbound and outbound streams:
class ExampleHandler implements WebSocketHandler {
@Override
public Mono<Void> handle(WebSocketSession session) {
Flux<WebSocketMessage> output = session.receive() // (1)
.doOnNext(message -> {
// ...
})
.concatMap(message -> {
// ...
})
.map(value -> session.textMessage("Echo " + value)); // (2)
return session.send(output); // (3)
}
}
-
Handle the inbound message stream.
-
Create the outbound message, producing a combined flow.
-
Return a
Mono<Void>
that does not complete while we continue to receive.
class ExampleHandler : WebSocketHandler {
override fun handle(session: WebSocketSession): Mono<Void> {
val output = session.receive() // (1)
.doOnNext {
// ...
}
.concatMap {
// ...
}
.map { session.textMessage("Echo $it") } // (2)
return session.send(output) // (3)
}
}
-
Handle the inbound message stream.
-
Create the outbound message, producing a combined flow.
-
Return a
Mono<Void>
that does not complete while we continue to receive.
Inbound and outbound streams can be independent and be joined only for completion, as the following example shows:
class ExampleHandler implements WebSocketHandler {
@Override
public Mono<Void> handle(WebSocketSession session) {
Mono<Void> input = session.receive() (1)
.doOnNext(message -> {
// ...
})
.concatMap(message -> {
// ...
})
.then();
Flux<String> source = ... ;
Mono<Void> output = session.send(source.map(session::textMessage)); (2)
return Mono.zip(input, output).then(); (3)
}
}
-
Handle inbound message stream.
-
Send outgoing messages.
-
Join the streams and return a
Mono<Void>
that completes when either stream ends.
class ExampleHandler : WebSocketHandler {
override fun handle(session: WebSocketSession): Mono<Void> {
val input = session.receive() // (1)
.doOnNext {
// ...
}
.concatMap {
// ...
}
.then()
val source: Flux<String> = ...
val output = session.send(source.map(session::textMessage)) // (2)
return Mono.zip(input, output).then() // (3)
}
}
-
Handle inbound message stream.
-
Send outgoing messages.
-
Join the streams and return a
Mono<Void>
that completes when either stream ends.
DataBuffer
is the representation for a byte buffer in WebFlux. The Spring Core part of
the reference has more on that in the section on
Data Buffers and Codecs. The key point to understand is that on some
servers like Netty, byte buffers are pooled and reference counted, and must be released
when consumed to avoid memory leaks.
When running on Netty, applications must use DataBufferUtils.retain(dataBuffer)
if they
wish to hold on input data buffers in order to ensure they are not released, and
subsequently use DataBufferUtils.release(dataBuffer)
when the buffers are consumed.
WebSocketHandlerAdapter
delegates to a WebSocketService
. By default, that is an instance
of HandshakeWebSocketService
, which performs basic checks on the WebSocket request and
then uses RequestUpgradeStrategy
for the server in use. Currently, there is built-in
support for Reactor Netty, Tomcat, Jetty, and Undertow.
HandshakeWebSocketService
exposes a sessionAttributePredicate
property that allows
setting a Predicate<String>
to extract attributes from the WebSession
and insert them
into the attributes of the WebSocketSession
.
The RequestUpgradeStrategy
for each server exposes WebSocket-related configuration
options available for the underlying WebSocket engine. The following example sets
WebSocket options when running on Tomcat:
@Configuration
class WebConfig {
@Bean
public WebSocketHandlerAdapter handlerAdapter() {
return new WebSocketHandlerAdapter(webSocketService());
}
@Bean
public WebSocketService webSocketService() {
TomcatRequestUpgradeStrategy strategy = new TomcatRequestUpgradeStrategy();
strategy.setMaxSessionIdleTimeout(0L);
return new HandshakeWebSocketService(strategy);
}
}
@Configuration
class WebConfig {
@Bean
fun handlerAdapter() =
WebSocketHandlerAdapter(webSocketService())
@Bean
fun webSocketService(): WebSocketService {
val strategy = TomcatRequestUpgradeStrategy().apply {
setMaxSessionIdleTimeout(0L)
}
return HandshakeWebSocketService(strategy)
}
}
Check the upgrade strategy for your server to see what options are available. Currently, only Tomcat and Jetty expose such options.
The easiest way to configure CORS and restrict access to a WebSocket endpoint is to
have your WebSocketHandler
implement CorsConfigurationSource
and return a
CorsConfiguraiton
with allowed origins, headers, and other details. If you cannot do
that, you can also set the corsConfigurations
property on the SimpleUrlHandler
to
specify CORS settings by URL pattern. If both are specified, they are combined by using the
combine
method on CorsConfiguration
.
Spring WebFlux provides a WebSocketClient
abstraction with implementations for
Reactor Netty, Tomcat, Jetty, Undertow, and standard Java (that is, JSR-356).
Note
|
The Tomcat client is effectively an extension of the standard Java one with some extra
functionality in the WebSocketSession handling to take advantage of the Tomcat-specific
API to suspend receiving messages for back pressure.
|
To start a WebSocket session, you can create an instance of the client and use its execute
methods:
WebSocketClient client = new ReactorNettyWebSocketClient();
URI url = new URI("ws://localhost:8080/path");
client.execute(url, session ->
session.receive()
.doOnNext(System.out::println)
.then());
val client = ReactorNettyWebSocketClient()
val url = URI("ws://localhost:8080/path")
client.execute(url) { session ->
session.receive()
.doOnNext(::println)
.then()
}
Some clients, such as Jetty, implement Lifecycle
and need to be stopped and started
before you can use them. All clients have constructor options related to configuration
of the underlying WebSocket client.