forked from m986883511/PaddleOCR-API
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathocr.py
177 lines (149 loc) · 5.86 KB
/
ocr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2
import fastapi
import copy
import numpy as np
import json
import time
import logging
from PIL import Image
from loguru import logger # noqa
import tools.infer.utility as utility
import tools.infer.predict_rec as predict_rec
import tools.infer.predict_det as predict_det
import tools.infer.predict_cls as predict_cls
from ppocr.utils.logging import get_logger
from tools.infer.utility import draw_ocr_box_txt, get_rotate_crop_image
class TextSystem(object):
def __init__(self, args):
if not args.show_log:
logger.setLevel(logging.INFO)
self.text_detector = predict_det.TextDetector(args)
self.text_recognizer = predict_rec.TextRecognizer(args)
self.use_angle_cls = args.use_angle_cls
self.drop_score = args.drop_score
if self.use_angle_cls:
self.text_classifier = predict_cls.TextClassifier(args)
self.args = args
self.crop_image_res_index = 0
def draw_crop_rec_res(self, output_dir, img_crop_list, rec_res):
os.makedirs(output_dir, exist_ok=True)
bbox_num = len(img_crop_list)
for bno in range(bbox_num):
cv2.imwrite(
os.path.join(output_dir,
f"mg_crop_{bno + self.crop_image_res_index}.jpg"),
img_crop_list[bno])
logger.debug(f"{bno}, {rec_res[bno]}")
self.crop_image_res_index += bbox_num
def __call__(self, img, cls=True):
time_dict = {'det': 0, 'rec': 0, 'csl': 0, 'all': 0}
start = time.time()
ori_im = img.copy()
dt_boxes, elapse = self.text_detector(img)
time_dict['det'] = elapse
logger.debug("dt_boxes num : {}, elapse : {}".format(
len(dt_boxes), elapse))
if dt_boxes is None:
return None, None
img_crop_list = []
dt_boxes = sorted_boxes(dt_boxes)
for bno in range(len(dt_boxes)):
tmp_box = copy.deepcopy(dt_boxes[bno])
img_crop = get_rotate_crop_image(ori_im, tmp_box)
img_crop_list.append(img_crop)
if self.use_angle_cls and cls:
img_crop_list, angle_list, elapse = self.text_classifier(
img_crop_list)
time_dict['cls'] = elapse
logger.debug("cls num : {}, elapse : {}".format(
len(img_crop_list), elapse))
rec_res, elapse = self.text_recognizer(img_crop_list)
time_dict['rec'] = elapse
logger.debug("rec_res num : {}, elapse : {}".format(
len(rec_res), elapse))
if self.args.save_crop_res:
self.draw_crop_rec_res(self.args.crop_res_save_dir, img_crop_list,
rec_res)
filter_boxes, filter_rec_res = [], []
for box, rec_result in zip(dt_boxes, rec_res):
text, score = rec_result
if score >= self.drop_score:
filter_boxes.append(box)
filter_rec_res.append(rec_result)
end = time.time()
time_dict['all'] = end - start
return filter_boxes, filter_rec_res, time_dict
def sorted_boxes(dt_boxes):
"""
Sort text boxes in order from top to bottom, left to right
args:
dt_boxes(array):detected text boxes with shape [4, 2]
return:
sorted boxes(array) with shape [4, 2]
"""
num_boxes = dt_boxes.shape[0]
sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
_boxes = list(sorted_boxes)
for i in range(num_boxes - 1):
for j in range(i, 0, -1):
if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and \
(_boxes[j + 1][0][0] < _boxes[j][0][0]):
tmp = _boxes[j]
_boxes[j] = _boxes[j + 1]
_boxes[j + 1] = tmp
else:
break
return _boxes
class Need:
text_sys = None
font_path = ''
drop_score = ''
draw_img_save_dir = ''
def load_model():
args = utility.parse_args()
args.det_model_dir = os.getenv('DET_MODEL', './ch_PP-OCRv3_det_infer')
args.rec_model_dir = os.getenv('REC_MODEL', './ch_PP-OCRv3_rec_infer')
logger.info('model={}, {}'.format(args.det_model_dir, args.rec_model_dir))
args.use_gpu = True
Need.text_sys = TextSystem(args)
Need.font_path = args.vis_font_path
Need.drop_score = args.drop_score
Need.draw_img_save_dir = args.draw_img_save_dir
os.makedirs(Need.draw_img_save_dir, exist_ok=True)
def ocr(img_array, download_filename=None):
_st = time.time()
start_time = time.time()
dt_boxes, rec_res, time_dict = Need.text_sys(img_array)
elapse = time.time() - start_time
logger.debug("Predict time of %s: %.3fs" % (img_array, elapse))
for text, score in rec_res:
logger.debug("{}, {:.3f}".format(text, score))
res = [{
"transcription": rec_res[idx][0],
"points": np.array(dt_boxes[idx]).astype(np.int32).tolist(),
} for idx in range(len(dt_boxes))]
if download_filename:
image = Image.fromarray(cv2.cvtColor(img_array, cv2.COLOR_BGR2RGB))
boxes = dt_boxes
txts = [rec_res[i][0] for i in range(len(rec_res))]
scores = [rec_res[i][1] for i in range(len(rec_res))]
draw_img = draw_ocr_box_txt(
image,
boxes,
txts,
scores,
drop_score=Need.drop_score,
font_path=Need.font_path)
cv2.imwrite(
os.path.join(Need.draw_img_save_dir, os.path.basename(download_filename)),
draw_img[:, :, ::-1])
logger.debug("The visualized image saved in {}".format(
os.path.join(Need.draw_img_save_dir, os.path.basename(download_filename))))
logger.info("The predict total time is {}".format(time.time() - _st))
return res
if __name__ == "__main__":
pic_path = './22.png'
load_model()
ocr(cv2.imread(pic_path))