-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprm_eval_utils.py
517 lines (418 loc) · 23.4 KB
/
prm_eval_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
from datasets import load_from_disk, Dataset
import json
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import Optional, List
from functools import partial
from copy import deepcopy
import re
import pandas as pd
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader
import deepspeed
import os
from accelerate.utils import gather_object
def get_raw_data(dataset_name, process_inst=False):
if dataset_name == 'gsm8k':
file_list = [
'/home/test/test05/lwd/mcts-data/testset/gsm8k-plus-llama3.1-8b-inst-128.json',
'/home/test/test05/lwd/mcts-data/testset/gsm8k-plus-llama3-70b-inst-128.json',
'/home/test/test05/lwd/mcts-data/testset/gsm8k-plus-Eurux-8x22b-nca-128.json',
]
origin_dataset = load_from_disk('/home/test/test05/lwd/hf-dataset-download/GSM-Plus')['testmini']
origin_dataset = [d for d in origin_dataset][:500]
elif dataset_name == 'qa':
file_list = [
'/home/test/test05/lwd/mcts-data/testset/qa-llama3.1-8b-inst-128.json',
'/home/test/test05/lwd/mcts-data/testset/qa-llama3-70b-inst-128.json',
'/home/test/test05/lwd/mcts-data/testset/qa-Eurux-8x22b-nca-128.json',
]
origin_dataset = json.load(open('/home/test/test05/lwd/mcts-data/testset/theorem_qa.json'))
origin_dataset = [d for d in origin_dataset if d['Picture'] == None]
elif dataset_name == 'math':
file_list = [
'/home/test/test05/lwd/mcts-data/testset-0.5/math-Eurux-8x22b-nca-64.json',
'/home/test/test05/lwd/mcts-data/testset-0.5/math-Meta-Llama-3-70B-Instruct-64.json',
'/home/test/test05/lwd/mcts-data/testset-0.5/math-llama3.1-8b-inst-64.json',
] if process_inst else [
# '/home/test/test05/lwd/mcts-data/testset/math-o1-sft-64.json'
'/home/test/test05/ylf/prm_eval/testset/math-Eurux-8x22b-nca-64.json',
'/home/test/test05/ylf/prm_eval/testset/math-Meta-Llama-3-70B-Instruct-64.json',
'/home/test/test05/ylf/prm_eval/testset/math-llama3.1-8b-inst-64.json',
]
path = '/home/test/test05/lwd/mcts-data/testset/MATH500.jsonl'
with open(path) as f:
origin_dataset = [json.loads(line) for line in f]
return file_list, origin_dataset
def get_tokenizer(tokenizer_path, ref_tokenizer_path):
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
if not tokenizer.pad_token:
tokenizer.pad_token = tokenizer.eos_token
try:
tokenizer.apply_chat_template([{'role': 'user', 'content': ' '}], add_generation_prompt=True, tokenize=False)
except:
print('WARNING:your tokenizer does not have a default template')
if ref_tokenizer_path!=None:
ref_tokenizer = AutoTokenizer.from_pretrained(ref_tokenizer_path)
if not ref_tokenizer.pad_token:
ref_tokenizer.pad_token = ref_tokenizer.eos_token
try:
ref_tokenizer.apply_chat_template([{'role': 'user', 'content': ' '}], add_generation_prompt=True,
tokenize=False)
except:
print('WARNING:your ref_tokenizer does not have a default template')
else:
ref_tokenizer=None
return tokenizer, ref_tokenizer
def set_special_token_ids(prm_token, good_token, bad_token, tokenizer):
prm_token_id = tokenizer.encode(f"{prm_token}")[-1] if prm_token else None
good_token_id = tokenizer.encode(f"{good_token}",add_special_tokens=False)[-1]
bad_token_id = tokenizer.encode(f"{bad_token}",add_special_tokens=False)[-1]
return prm_token_id, good_token_id, bad_token_id
from transformers import PreTrainedModel, AutoConfig, AutoModel
class LlamaRewardModel(PreTrainedModel):
config_class = AutoConfig
def __init__(self, config):
super().__init__(config)
self.model = AutoModel.from_config(config)
self.value_head = nn.Linear(self.config.hidden_size, 1, bias=False)
def forward( # args are the same as LlamaForCausalLM
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
)
hidden_states = transformer_outputs[0]
rewards = self.value_head(hidden_states).squeeze(-1)
return rewards
def init_ds_models(type, load, ref_load, bon_dataset):
if 'dpo' in type:
model = AutoModelForCausalLM.from_pretrained(load).cuda() # torch_dtype=torch.bfloat16)
ds_engine = deepspeed.init_inference(model,
tensor_parallel={"tp_size": 1},
dtype=torch.bfloat16)
model = ds_engine.module
model.eval().requires_grad_(False)
elif type=='prm-value':
model = LlamaRewardModel.from_pretrained(load).cuda() # torch_dtype=torch.bfloat16)
ds_engine = deepspeed.init_inference(model,
tensor_parallel={"tp_size": 1},
dtype=torch.bfloat16)
model = ds_engine.module
model.eval().requires_grad_(False)
elif type=='prm-llm':
model = AutoModelForCausalLM.from_pretrained(load).cuda() # torch_dtype=torch.bfloat16)
ds_engine = deepspeed.init_inference(model,
tensor_parallel={"tp_size": 1},
dtype=torch.bfloat16)
model = ds_engine.module
model.eval().requires_grad_(False)
# load ref only when we haven't saved its logits; otherwise we can directly load forwarded logits and no need for another pass
dir_name = ref_load.split('/')[-1] if ref_load else "placeholder"
ref_logits_dir = f"/home/test/test05/ylf/prm_eval/ref_logits/{dir_name}"
os.makedirs(os.path.join(ref_logits_dir, bon_dataset), exist_ok=True)
ref_logits_path_list = [f"{ref_logits_dir}/{bon_dataset}/{testset_generator}.json"
for testset_generator in ["eurux-8x22b-nca","llama3.1-70b-inst","llama3.1-8b-inst"]] #'math-o1-sft-64']]#
if 'dpo' in type and ref_load != None and any([not os.path.exists(ref_logits_path) for ref_logits_path in ref_logits_path_list]):
ref_model = AutoModelForCausalLM.from_pretrained(ref_load).cuda() # torch_dtype=torch.bfloat16)
ref_ds_engine = deepspeed.init_inference(ref_model,
tensor_parallel={"tp_size": 1},
dtype=torch.bfloat16)
ref_model = ref_ds_engine.module
ref_model.eval().requires_grad_(False)
else:
ref_model = None
return model, ref_model, ref_logits_path_list
def load_data(file_name, origin_dataset):
queries = []
if file_name.endswith('json'):
cur_data = json.load(open(file_name))
else:
with open(file_name) as f:
cur_data = [json.loads(line) for line in f]
if 'gsm' in file_name:
cur_data = cur_data[:500]
cur_queries = deepcopy(cur_data)
# print(cur_queries[:10])
if "reference" in cur_queries[0].keys():
return cur_queries
assert len(origin_dataset) == len(cur_queries), (len(origin_dataset), len(cur_queries))
for idx, (data, ori) in enumerate(zip(cur_queries, origin_dataset)):
if 'problem' in ori:
assert 'question' in data and data['question'] == ori['problem'] or 'problem' in data and data[
'problem'] == ori['problem']
elif 'question' in ori:
assert 'question' in data and data['question'] == ori['question'] or 'problem' in data and data[
'problem'] == ori['question']
else:
assert 'question' in data and data['question'] == ori['Question'] or 'problem' in data and data[
'problem'] == ori['Question'] or 'Question' in data and data['Question'] == ori['Question'], (
data.keys(), ori.keys())
assert len(data['responses']) == 128 or len(data['responses']) == 64, (
file_name, len(data['responses']))
if len(data['responses']) > 64:
data['responses'] = data['responses'][:64]
for response_dict in data['responses']:
queries.append({
'idx': idx,
'prompt': data['question'] if 'question' in data else (
data['problem'] if 'problem' in data else data['Question']),
'response': response_dict['text'],
'solution': ori['solution'] if 'solution' in ori else str(ori['Answer']),
})
return queries
def dpo_data_collator(example, tokenizer, special_ids, accelerator, type):
inputs = []
idx,reward_idx = [],[]
special_tokens = []
label_mask = []
for d in example:
input_ids = tokenizer.apply_chat_template([
{"role":"user", "content":d["query"]},
{"role":"assistant", "content":"\n\n".join(d["answer"])},
], tokenize=True, add_generation_prompt=False)
inputs.append(torch.tensor(input_ids))
# TODO: the readability is low; should directly locate steps by its length
cur_special_ids = []
if "orm" not in type:
for idd,id in enumerate(input_ids[1:]):
if id in special_ids[:-1]:
flag = 0
for sub_i in range(idd + 1, min(len(input_ids)-1, idd + 6)):
if input_ids[1:][sub_i] == special_ids[-1]:
flag = 1
break
if input_ids[1:][sub_i] in special_ids[:-1]:
break
if flag and idd-1>=0:
cur_special_ids.append(idd-1)
else:
cur_special_ids.append(0)
cur_special_ids.append(len(input_ids[1:])-1)
# assert len(cur_special_ids)==len(d['labels'])
special_tokens.append(torch.tensor(cur_special_ids))
label_mask.append(torch.tensor( [0]*cur_special_ids[0]+[1]*(len(input_ids)-cur_special_ids[0]) ))
idx.append(d['idx'])
reward_idx.append(d['reward_idx'])
labels = pad_sequence(inputs, padding_value=-100, batch_first=True)
inputs = pad_sequence(inputs, padding_value=tokenizer.pad_token_id, batch_first=True)
attention_mask = (inputs!=tokenizer.pad_token_id)
label_mask = pad_sequence(label_mask, padding_value=0, batch_first=True)
special_tokens = pad_sequence(special_tokens, padding_value=-100, batch_first=True)
return {
'input_ids': inputs.int().to(accelerator.device),
'attention_mask': attention_mask.int().to(accelerator.device),
'labels':labels.int().to(accelerator.device),
'label_mask':label_mask.to(accelerator.device),
'special_tokens':special_tokens.to(accelerator.device),
'idx':torch.tensor(idx).to(accelerator.device),
'reward_idx':torch.tensor(reward_idx).to(accelerator.device)
}
def prm_data_collator(example, tokenizer, special_ids, accelerator):
from itertools import chain
inputs = []
idx,reward_idx = [],[]
special_tokens = []
label_mask = []
attention_mask = []
prm_token_id = special_ids["prm_token_id"]
for d in example:
query_str = tokenizer.apply_chat_template([{"role": "user", "content": d["query"]}], tokenize=False, add_generation_prompt=True)
query_ids = tokenizer(query_str, padding=False, add_special_tokens=False).input_ids
split_tokens = []
answer_ids = tokenizer(d["answer"], add_special_tokens=False).input_ids
input_ids = query_ids + split_tokens + list(chain(*[lst + [prm_token_id] for lst in answer_ids])) + [prm_token_id, tokenizer.eos_token_id]
inputs.append(torch.tensor(input_ids))
attn_mask = [1]*len(input_ids)
for idd, inp_id in enumerate(input_ids):
if inp_id in special_ids.values():
attn_mask[idd] = 0
attention_mask.append(torch.tensor(attn_mask))
cur_special_ids = []
for idd,id in enumerate(input_ids):
if id == prm_token_id:
cur_special_ids.append(idd)
# remove the first prm_token_id between query and answr
# if not args.use_osv_template:
# cur_special_ids = cur_special_ids[1:]
if len(cur_special_ids)<1:
print(tokenizer.tokenize(template.format(query=d['query'],answer=d['answer']),
add_special_tokens=False),input_ids,prm_token_id)
raise ValueError
special_tokens.append(torch.tensor(cur_special_ids))
idx.append(d['idx'])
reward_idx.append(d['reward_idx'])
inputs = pad_sequence(inputs, padding_value=tokenizer.pad_token_id, batch_first=True)
attention_mask = pad_sequence(attention_mask, padding_value=tokenizer.pad_token_id, batch_first=True)
special_tokens = pad_sequence(special_tokens, padding_value=-100, batch_first=True)
return {
'input_ids': inputs.int().to(accelerator.device),
'attention_mask': attention_mask.int().to(accelerator.device),
'special_tokens':special_tokens.long().to(accelerator.device),
'idx':torch.tensor(idx).to(accelerator.device),
'reward_idx':torch.tensor(reward_idx).to(accelerator.device)
}
def get_dataloader(type, queries, batch_size, tokenizer, ref_tokenizer, step_mark_ids, prm_special_ids, accelerator):
for idx, data in enumerate(queries):
data['reward_idx'] = idx
data["query"] = data["prompt"]
steps = re.split('Step \d+:', data['response'])
steps = [step.strip().replace('Step', 'step') for step in steps if step.strip() != '']
steps = [f'Step {id + 1}: ' + step for id, step in enumerate(steps) if step.strip() != '']
data["answer"] = steps
data['logprobs'] = 0
if accelerator.is_local_main_process:
print('Dataset Example:')
print(queries[0])
dataset = Dataset.from_pandas(pd.DataFrame.from_records(queries))
data_collator = {'dpo': dpo_data_collator, 'dpo-orm': dpo_data_collator, 'prm-value': prm_data_collator, 'prm-llm': prm_data_collator}
special_ids = {'dpo': step_mark_ids, 'dpo-orm': step_mark_ids, 'prm-value': prm_special_ids, 'prm-llm': prm_special_ids}
dataloader = DataLoader(dataset,batch_size=batch_size,shuffle=False,
collate_fn=partial(data_collator[type], tokenizer=tokenizer, special_ids=special_ids[type], accelerator=accelerator, type=type))
assert ref_tokenizer!=None
ref_dataloader = DataLoader(dataset,batch_size=batch_size,shuffle=False,
collate_fn=partial(dpo_data_collator, tokenizer=ref_tokenizer, special_ids=special_ids[type], accelerator=accelerator, type=type)) if ref_tokenizer!=None else None
return dataloader, ref_dataloader
def devide_dataloader_to_devices(dataloader, accelerator, local_rank):
tmp = []
dataloader_per_device = [[] for _ in range(accelerator.num_processes)]
for iteration, data in enumerate(dataloader):
tmp.append(data)
steps = iteration + 1
if steps % accelerator.num_processes == 0:
for i in range(accelerator.num_processes):
dataloader_per_device[i].append(tmp[i])
tmp = []
assert len(tmp)==0
dataloader = dataloader_per_device[local_rank]
return dataloader
def get_logps(model,inputs):
logits = model(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask']).logits
labels = inputs['labels'][:, 1:].clone().long()
logits = logits[:, :-1, :]
labels[labels == -100] = 0
per_token_logps = torch.gather(logits.log_softmax(-1), dim=2, index=labels.unsqueeze(2)).squeeze(2)
loss_mask = labels != -100
per_token_logps = per_token_logps * loss_mask
return per_token_logps
def compute_beta(rewards, method):
ori_shape = rewards.shape
if method == "constant":
beta = 1
if method == "weighted":
beta = 1 / torch.ones_like(rewards).cumsum(-1).cuda()
assert beta.shape == rewards.shape, (beta.shape, rewards)
elif method == "weighted exponential decay":
beta = 0.95 ** (torch.ones_like(rewards).cumsum(-1) - 1).cuda()
assert beta.shape == rewards.shape, (beta.shape, rewards)
elif method == "length normalized":
beta = 1 / (rewards.cumsum(-1).argmax(-1) + 1).unsqueeze(-1).cuda()
assert beta.shape[0] == rewards.shape[0] and beta.shape[1] == 1, (beta.shape, rewards.shape)
rewards = beta * rewards
assert rewards.shape == ori_shape
return rewards
def get_reward(model, inputs, type, accelerator, ref_per_token_logps=None, good_token_id=None, bad_token_id=None):
if 'dpo' in type:
with torch.no_grad():
per_token_logps = get_logps(model,inputs)
cur_index = torch.where(inputs['special_tokens']==-100, 0, inputs['special_tokens']) #-1 因为label向前移了一位
all_rewards = {}
# for ref_setup in ["w/ ref", "w/o ref"]:
for ref_setup in ["w/ ref"]:
all_rewards[ref_setup] = {}
raw_reward = per_token_logps - ref_per_token_logps if ref_setup == "w/ ref" else per_token_logps
raw_reward = raw_reward * inputs['label_mask'][:, 1:]
# for beta_method_outer in ["constant", "weighted", "weighted exponential decay", "length normalized"]:
for beta_method_outer in ['constant',"length normalized"] if type != "dpo-orm" else ['constant']:
beta_reward_before_scaling = compute_beta(raw_reward, beta_method_outer)
for coef in [0.001, 0.005, 0.01, 0.05]:
beta_method = f"{beta_method_outer}+coef-{coef}"
all_rewards[ref_setup][beta_method] = {}
beta_reward = coef * beta_reward_before_scaling
beta_reward = beta_reward.cumsum(-1)
beta_reward = beta_reward.gather(dim=-1, index=cur_index[:, 1:])
beta_reward = torch.where(inputs['special_tokens'][:, 1:] == -100, 1e3, beta_reward)
for reward_approach in ["single", "accumulative"] if type != "dpo-orm" else ["orm"]:
if reward_approach == "single":
rewards = beta_reward - torch.cat([torch.zeros(beta_reward.shape[0],1, device=beta_reward.device),
beta_reward[:, :-1]], dim=-1)
rewards = torch.where(inputs['special_tokens'][:, 1:] == -100, 1e3, rewards)
else:
rewards = beta_reward.clone()
# rewards = gather_object(rewards.tolist())
rewards = gather_object(rewards)
all_rewards[ref_setup][beta_method][reward_approach] = rewards
# all_rewards[ref_setup][reward_approach] = rewards
elif 'prm' in type:
with torch.no_grad():
if type=='prm-value':
rewards = model(input_ids = inputs['input_ids'],attention_mask = inputs['attention_mask'])
elif type=='prm-llm':
logits = model(input_ids = inputs['input_ids'],attention_mask = inputs['attention_mask']).logits[:, :, [good_token_id,bad_token_id]]
rewards = logits.softmax(dim=-1)[:, :, 0]
cur_index = torch.where(inputs['special_tokens'] == -100, 0,inputs['special_tokens'])
rewards = rewards.gather(dim=-1, index=cur_index)
rewards = torch.where(inputs['special_tokens']==-100, 1e3, rewards)
# rewards = gather_object(rewards.tolist())
rewards = gather_object(rewards)
all_rewards = {"w/o ref": {"constant": {"single": rewards}}}
reward_idxes = accelerator.gather(inputs['reward_idx'])
return all_rewards, reward_idxes
def manipulate_rewards(all_rewards, queries, reward_idxes, accelerator):
for ref_setup in all_rewards.keys():
for beta_method in all_rewards[ref_setup].keys():
for reward_approach in all_rewards[ref_setup][beta_method].keys():
ori_rewards = all_rewards[ref_setup][beta_method][reward_approach]
different_calculations = {}
# for method in ["min", "sum", "mean"]:
for method in ["min", "sum"]:
if method == "min":
rewards = [reward.min(-1).values for reward in ori_rewards]
elif method == "sum":
rewards = [torch.where(reward==1e3,0,reward).sum(-1) for reward in ori_rewards]
elif method == "mean":
rewards = [torch.where(reward==1e3,0,reward).sum(-1)/torch.where(reward==1e3,0,1).sum(-1) for reward in ori_rewards]
# rewards = gather_object(rewards)
different_calculations[method] = rewards
assert len(rewards) == len(reward_idxes)
for reward, reward_idx in zip(rewards, reward_idxes):
if "reward" not in queries[int(reward_idx)].keys():
queries[int(reward_idx)]["reward"] = {}
if ref_setup not in queries[int(reward_idx)]["reward"].keys():
queries[int(reward_idx)]["reward"][ref_setup] = {}
if beta_method not in queries[int(reward_idx)]["reward"][ref_setup].keys():
queries[int(reward_idx)]["reward"][ref_setup][beta_method] = {}
if reward_approach not in queries[int(reward_idx)]["reward"][ref_setup][beta_method].keys():
queries[int(reward_idx)]["reward"][ref_setup][beta_method][reward_approach] = {}
# queries[int(reward_idx)]["reward"]["all_steps"] = [rew.tolist() for rew in ori_rewards]
queries[int(reward_idx)]["reward"][ref_setup][beta_method][reward_approach][method] = reward.item()
all_rewards[ref_setup][beta_method][reward_approach] = different_calculations
return all_rewards, queries
def split_query(completions, n, N=16): # extract top-n logprob completion for each query
splitted_completions = []
for idx in range(int(len(completions) / N)):
samples = [sample for sample in completions if sample["idx"] == idx]
samples = sorted(samples, key=lambda x: x["logprobs"], reverse=True)
splitted_completions.append(samples[:n])
return splitted_completions
def best_of_n(splitted_completions,key='reward'):
selected_completions = []
for n_completions_per_query in splitted_completions:
n_completions_per_query = sorted(n_completions_per_query, key=lambda x: x[key], reverse=True)
assert all([n_completions_per_query[0][key] >= completion[key] for completion in n_completions_per_query])
selected_completions.append(n_completions_per_query[0])
return selected_completions