forked from nguyen-td/roiconnect
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pop_roi_statsplot.m
executable file
·109 lines (97 loc) · 4.25 KB
/
pop_roi_statsplot.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
% pop_roi_statsplot() - Generate p-values from FC null distributions and plots them. Based on Franziska Pellegrini's script
% fp_plot_fc_shuffletest.
%
% Inputs:
% EEG - EEGLAB dataset with ROI activity computed.
%
% Optional inputs:
% 'measure' - [cell] Cell of strings corresponding to methods.
% 'CS' : Cross spectrum
% 'aCOH' : Coherence
% 'cCOH' : (complex-valued) coherency
% 'iCOH' : absolute value of the imaginary part of coherency
% 'wPLI' : Weighted Phase Lag Index
% 'PDC' : Partial directed coherence
% 'TRPDC' : Time-reversed partial directed coherence
% 'DTF' : Directed transfer entropy
% 'TRDTF' : Time-reversed directed transfer entropy
% 'MIM' : Multivariate Interaction Measure for each ROI
% 'MIC' : Maximized Imaginary Coherency for each ROI
% 'PAC' : Phase Amplitude Coupling for each ROI
% 'freqrange' - [min max] frequency range or [integer] single frequency in Hz. Default is to plot broadband power.
% 'alpha' - [integer] Significance level. Default is 0.05.
% 'bispec' - ['b_anti'|'b_orig'] Option to compute antisymmetric or original bispectrum.
%
% Author: Franziska Pellegrini, [email protected]
% Tien Dung Nguyen, [email protected]
% Zixuan Liu, [email protected]
function EEG = pop_roi_statsplot(EEG, varargin)
if nargin < 2
help roi_connstats;
return
end
if ~isfield(EEG, 'roi') || ~isfield(EEG.roi, 'source_roi_data')
error('Cannot find ROI data - compute ROI data first');
end
% decode input parameters
% -----------------------
g = finputcheck(varargin, {
'measure' 'string' { } '';
'freqrange' 'real' { } []; ...
'alpha' 'integer' { } 0.05; ...
'bispec' 'string' {'b_orig', 'b_anti'} 'b_anti'}, 'pop_roi_statsplot');
if ischar(g), error(g); end
% check if measure is defined.
if isempty(g.measure)
error('You must define a measure to plot');
end
% adjust based on measure, PAC has one less dimension.
if strcmp(g.measure, 'PAC') % check if measure is PAC
% for PAC, check the bispectrum parameter
if isfield(EEG.roi.(g.measure), g.bispec)
matrix = EEG.roi.(g.measure).(g.bispec); % use specified bispectrum field
else
error(['The specified bispectrum field (' g.bispec ') does not exist in EEG.roi.']);
end
else
% if measure is not PAC, use the EEG.roi
S = EEG.roi;
% extract frequency indices
if ~isempty(g.freqrange)
if length(g.freqrange) == 1
frq_inds = find(S.freqs == g.freqrange(1));
title = sprintf('%1.1f Hz', g.freqrange(1));
else
frq_inds = find(S.freqs >= g.freqrange(1) & S.freqs <= g.freqrange(2));
title = sprintf('%1.1f-%1.1f Hz frequency band', g.freqrange(1), g.freqrange(2));
end
else
frq_inds = 1:length(S.freqs);
title = 'broadband';
end
% select frequency or frequency band
if length(frq_inds) > 1
matrix = squeeze(mean(S.(g.measure)(frq_inds, :, :, :)));
else
matrix = squeeze(S.(g.measure)(frq_inds, :, :, :));
end
end
% generate p-values by comparing the true FC (first shuffle) to null distribution
netFC = squeeze(mean(matrix, 2));
FC_pn = sum(netFC(:, 1) < netFC(:, 2:end), 2)./(size(matrix, 3) - 1);
% use FDR-correction for multiple comparison's correction
[p_fdr, ~] = fdr(FC_pn, g.alpha);
FC_pn(FC_pn > p_fdr) = 1;
% plot
load cm17;
load cortex;
FC_pn(FC_pn==0) = 1 / (size(netFC, 2) - 1); % 1 / nshuf
data = -log10(FC_pn);
try
allplots_cortex_BS(cortex_highres, data, [min(data) max(data)], cm17a ,'-log(p)', 0.3);
h = textsc(title, 'title');
set(h, 'fontsize', 20);
catch
warning('There are no "significant" p-values to be plotted.')
end
end