-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcrossover_order.go
169 lines (138 loc) · 4.42 KB
/
crossover_order.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
package genetic_algorithm
import (
log "github.com/cihub/seelog"
)
type orderCrossover struct {
virtualMethods orderCrossoverVirtualMInterface
canProduceCopiesOfParents bool
}
type orderCrossoverVirtualMInterface interface {
copyFromFillerString(child, filler OrderedGenes, crossPoint1, crossPoint2 int)
}
func newOrderCrossover(vm orderCrossoverVirtualMInterface) *orderCrossover {
crossover := new(orderCrossover)
crossover.virtualMethods = vm
return crossover
}
func (crossover *orderCrossover) ParentsCount() int {
return 2
}
func (crossover *orderCrossover) CanProduceCopiesOfParents(val bool) *orderCrossover {
crossover.canProduceCopiesOfParents = val
return crossover
}
func (crossover *orderCrossover) Crossover(parents Chromosomes) Chromosomes {
if len(parents) != crossover.ParentsCount() {
panic("Incorrect parents count")
}
p1, ok := parents[0].(*OrderedChromosome)
if !ok {
panic("Expects OrderedChromosome")
}
p2, ok := parents[1].(*OrderedChromosome)
if !ok {
panic("Expects OrderedChromosome")
}
genesLen := p1.Genes().Len()
if genesLen != p2.Genes().Len() {
panic("Crossover do not support different chromosome size")
}
if !crossover.canProduceCopiesOfParents && genesLen < 2 {
panic("Crossover can only produce copies of parents if genesLen < 2")
}
crossPoint1, crossPoint2 := chooseTwoPointCrossSection(genesLen, crossover.canProduceCopiesOfParents)
log.Tracef("Cross on %d:%d", crossPoint1, crossPoint2)
c1, c2 := crossover.crossover(p1, p2, crossPoint1, crossPoint2)
return Chromosomes{c1, c2}
}
func (crossover *orderCrossover) crossover(p1, p2 *OrderedChromosome, crossPoint1, crossPoint2 int) (c1, c2 ChromosomeInterface) {
p1genes := p1.OrderedGenes()
p2genes := p2.OrderedGenes()
genesLen := p1genes.Len()
c1 = NewEmptyOrderedChromosome(genesLen)
c1genes := c1.Genes().(OrderedGenes)
c2 = NewEmptyOrderedChromosome(genesLen)
c2genes := c2.Genes().(OrderedGenes)
copy(c1genes[crossPoint1:], p1genes[crossPoint1:crossPoint2])
copy(c2genes[crossPoint1:], p2genes[crossPoint1:crossPoint2])
crossover.virtualMethods.copyFromFillerString(c1genes, p2genes, crossPoint1, crossPoint2)
crossover.virtualMethods.copyFromFillerString(c2genes, p1genes, crossPoint1, crossPoint2)
return
}
// Crossover for ordered chromosomes.
// Tends to preserve relative order.
//
// parent1: A B C D E
// parent2: d b e a c
//
// cross section: _ * * _ _
//
// child1 step1: _ B C _ _
//
// parent2: d b e a c
// filler block: d _ e a _
// The first element of filler block is added at the end of the cross setion.
//
// child1: a B C d e
//
// Source: Modeling Simple Genetic Algorithms for Permutation Problems. Darrell Whitley , Nam-wook Yoo (1995)
// http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.3585
type OrderCrossoverVer1 struct{}
func NewOrderCrossoverVer1() *orderCrossover {
return newOrderCrossover(new(OrderCrossoverVer1))
}
func (crossover *OrderCrossoverVer1) copyFromFillerString(child, filler OrderedGenes, crossPoint1, crossPoint2 int) {
genesLen := len(filler)
crossSection := make(map[int]bool, crossPoint2-crossPoint1)
for i := crossPoint1; i < crossPoint2; i++ {
crossSection[child[i]] = true
}
ind := crossPoint2 % genesLen
for i := 0; i < genesLen; i++ {
if crossSection[filler[i]] {
continue
}
child[ind] = filler[i]
ind = (ind + 1) % genesLen
}
}
// Crossover for ordered chromosomes.
// Tends to preserve relative order.
//
// parent1: A B C D E
// parent2: d b e a c
//
// cross section: _ * * _ _
//
// child1 step1: _ B C _ _
//
// parent2: d b e a c
// filler block: d _ e a _
// The first element of filler block is added at the start of the child.
//
// child1: d B C e a
//
// Source: On Genetic Crossover Operators for Relative Order Preservation
// http://www.dmi.unict.it/mpavone/nc-cs/materiale/moscato89.pdf
type OrderCrossoverVer2 struct{}
func NewOrderCrossoverVer2() *orderCrossover {
return newOrderCrossover(new(OrderCrossoverVer2))
}
func (crossover *OrderCrossoverVer2) copyFromFillerString(child, filler OrderedGenes, crossPoint1, crossPoint2 int) {
genesLen := len(filler)
crossSection := make(map[int]bool, crossPoint2-crossPoint1)
for i := crossPoint1; i < crossPoint2; i++ {
crossSection[child[i]] = true
}
ind := 0
for i := 0; i < genesLen; i++ {
if crossSection[filler[i]] {
continue
}
if ind == crossPoint1 {
ind = crossPoint2
}
child[ind] = filler[i]
ind++
}
}