diff --git a/seg/utils/dataloaders.py b/seg/utils/dataloaders.py index 1c11fdeedc..967e728165 100644 --- a/seg/utils/dataloaders.py +++ b/seg/utils/dataloaders.py @@ -485,7 +485,7 @@ def __init__(self, self.im_files = list(cache.keys()) # update self.label_files = img2label_paths(cache.keys()) # update n = len(shapes) # number of images - bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index + bi = np.floor(np.arange(n) / batch_size).astype(int) # batch index nb = bi[-1] + 1 # number of batches self.batch = bi # batch index of image self.n = n @@ -528,7 +528,7 @@ def __init__(self, elif mini > 1: shapes[i] = [1, 1 / mini] - self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride + self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(int) * stride # Cache images into RAM/disk for faster training (WARNING: large datasets may exceed system resources) self.ims = [None] * n diff --git a/seg/utils/segment/plots.py b/seg/utils/segment/plots.py index eac46d9853..9b0ac6068f 100644 --- a/seg/utils/segment/plots.py +++ b/seg/utils/segment/plots.py @@ -137,7 +137,7 @@ def plot_images_and_masks(images, targets, masks, paths=None, fname='images.jpg' if mh != h or mw != w: mask = image_masks[j].astype(np.uint8) mask = cv2.resize(mask, (w, h)) - mask = mask.astype(np.bool) + mask = mask.astype(bool) else: mask = image_masks[j].astype(np.bool) with contextlib.suppress(Exception):