-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_2.py
124 lines (110 loc) · 5.53 KB
/
main_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import sys
import datetime
import matplotlib.pyplot as plt
import pandas as pd
import yfinance as yf
import ta
import json
class StockDataVisualizer:
def __init__(self, company_name, index, number):
self.company_name = company_name
self.index = index
self.number = number
self.stock_data = self.download_stock_data()
def download_stock_data(self):
end_date=datetime.datetime.now()
start_date=end_date - datetime.timedelta(days=25*365)
stock_data=yf.download(self.company_name, start=start_date, end=end_date)
stock_info = yf.Ticker(self.company_name).info
with open('graph.json', 'w') as json_file:
json.dump(stock_info, json_file, indent=4)
#stock_data.drop(columns=["Open", "High", "Low", "Adj Close", "Volume"], inplace=True)
print("jsonfile is created")
return stock_data
def calculate_price_change(self):
close_price=self.stock_data["Close"].iloc[-1]
previous_close=self.stock_data["Close"].iloc[-2]
price_change=close_price-previous_close
percentage_change=(price_change/previous_close)*100
return price_change,percentage_change
def plot_historical_data(self, start_date=None, end_date=None):
df = self.plot_technical_indicators_2(start_date, end_date)
price_change, percentage_change = self.calculate_price_change()
if price_change > 0:
print(f"+{price_change:.2f} (+{percentage_change:.2f}%)")
else:
print(f"{price_change:.2f} ({percentage_change:.2f}%)")
df.to_csv(f"stock_data_{self.number}.csv")
'''plt.figure(figsize=(14,7))
plt.plot(df["Close"], label="Historical Close Prices")
plt.title(f"Historical Close Prices for {self.company_name}")
self.plot_technical_indicators_28_10("Price")'''
print("csvfile is created")
def plot_technical_indicators(self, start_date=None, end_date=None):
df=self.plot_technical_indicators_2(start_date, end_date)
df["SMA50"]=df["Close"].rolling(window=50).mean()
df["SMA200"]=df["Close"].rolling(window=200).mean()
df["RSI"]=ta.momentum.RSIIndicator(df["Close"], window=14).rsi()
macd=ta.trend.MACD(df["Close"])
df["MACD"]=macd.macd()
df["MACD_signal"]=macd.macd_signal()
df["MACD_histogram"]=macd.macd_diff()
bollinger=ta.volatility.BollingerBands(df["Close"], window=20, window_dev=2)
df["Bollinger_hband"]=bollinger.bollinger_hband()
df["Bollinger_lband"]=bollinger.bollinger_lband()
df[["SMA50", "SMA200", "RSI", "MACD", "MACD_signal", "MACD_histogram", "Bollinger_hband", "Bollinger_lband"]].to_csv(f"technical_indicators_{self.index}.csv")
'''plt.figure(figsize=(14,7))
plt.plot(df["Close"], label="Close Price")
plt.plot(df["SMA50"], label="50-Day SMA")
plt.plot(df["SMA200"], label="200-Day SMA")
plt.fill_between(df.index, df["Bollinger_hband"], df["Bollinger_lband"], color="grey", alpha=0.3, label="Bollinger Bands")
self.plot_technical_indicators_28(' Technical Indicators', "Price")
plt.figure(figsize=(14,4))
plt.plot(df["RSI"], label="RSI", color="purple")
plt.axhline(70, color="red", linestyle="--")
plt.axhline(30, color="green", linestyle="--")
self.plot_technical_indicators_28(' RSI', "RSI")
plt.figure(figsize=(14,7))
plt.plot(df["MACD"], label="MACD", color="blue")
plt.plot(df["MACD_signal"], label="MACD Signal", color="red")
plt.bar(df.index, df["MACD_histogram"], label="MACD Histogram", color="green", alpha=0.3)
self.plot_technical_indicators_28(' MACD', "MACD")'''
def plot_technical_indicators_2(self, start_date, end_date):
result=self.stock_data.copy()
if start_date:
start_date = pd.to_datetime(start_date, format="%d-%m-%Y")
result=result[result.index>=pd.to_datetime(start_date)]
if end_date:
end_date = pd.to_datetime(end_date, format="%d-%m-%Y")
result=result[result.index<=pd.to_datetime(end_date)]
return result
def plot_technical_indicators_28(self, arg0, arg1):
plt.title(f"{self.company_name}{arg0}")
self.plot_technical_indicators_28_10(arg1)
def plot_technical_indicators_28_10(self, arg0):
plt.xlabel("Date")
plt.ylabel(arg0)
plt.legend()
plt.grid()
plt.show()
def run(self, start_date, end_date):
self.plot_historical_data(start_date, end_date)
self.plot_technical_indicators(start_date, end_date)
if __name__ == "__main__":
if len(sys.argv) < 4:
sys.exit(1)
number = int(sys.argv[1])
num_companies = int(sys.argv[2])
companies = sys.argv[3:3+num_companies]
start_date = sys.argv[3+num_companies] if len(sys.argv) > 3+num_companies else None
end_date = sys.argv[4+num_companies] if len(sys.argv) > 4+num_companies else None
if not 1 <= number <= 3:
print("Number must be between 1 and 3")
sys.exit(1)
if start_date:
start_date = datetime.datetime.strptime(start_date, "%d-%m-%Y").strftime("%d-%m-%Y")
if end_date:
end_date = datetime.datetime.strptime(end_date, "%d-%m-%Y").strftime("%d-%m-%Y")
for i, company_name in enumerate(companies, start=1):
visualizer = StockDataVisualizer(company_name, i, number)
visualizer.run(start_date, end_date)