-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
301 lines (268 loc) · 16.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
"""
=================================================
@Project :span-aste
@IDE :PyCharm
@Author :Mr. Wireless
@Date :2022/1/18 16:19
@Desc :
==================================================
"""
import argparse
import logging
import os
import random
import time
from utils.bar import ProgressBar
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import torch
from torch.utils.data import DataLoader
import numpy as np
from transformers import BertTokenizer, BertModel, get_linear_schedule_with_warmup
from torch.optim.lr_scheduler import CosineAnnealingLR
from utils.dataset import get_span_label, get_senti_label, Dataset_parser, load_dataset_vocab, load_data_instances, collate_fn
from utils.model import STABSA
import torch.nn as nn
from torch.nn import init
import torch.nn.functional as F
from functools import partial
logger = logging.getLogger(__name__)
def device(args):
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch.cuda.empty_cache()
args.device = device
print(f"using device:{device}")
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
def check_args(args):
'''
eliminate confilct situations
'''
logger.info(vars(args))
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--bert_model_dir", default="bert-base-uncased", type=str, help="The model location of bert.")
parser.add_argument("--dataset_name", default='15res', type=str, help="['14res', '14lap', '15res', '16res']")
parser.add_argument("--dataset_dir", default="data", type=str, help="The path of data dir.")
parser.add_argument("--batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument("--bert_learning_rate", default=5e-5, type=float, help="The initial BERT learning rate for AdamW.")
parser.add_argument("--linear_learning_rate", default=1e-3, type=float, help="The initial Liner layer learning rate for AdamW.")
parser.add_argument("--weight_decay", default=1e-3, type=float, help="The weight_decay for linear parameters.")
parser.add_argument("--warmup_proportion", default=0.1, type=float, help="The warmup rate rate for optimizer.")
parser.add_argument("--train_dir", default="train_triplets.json", type=str, help="The file of train dataset.")
parser.add_argument("--dev_dir", default="dev_triplets.json", type=str, help="The file of dev dataset.")
parser.add_argument("--test_dir", default="test_triplets.json", type=str, help="The file of test dataset.")
parser.add_argument("--max_seq_len", default=512, type=int, help="The maximum input sequence length. Sequences longer than this will be split automatically.")
parser.add_argument("--max_span_len", default=10, type=int, help="The maximum span length.")
parser.add_argument("--span_label_class", default=3, type=int, help="")
parser.add_argument("--senti_label_class", default=4, type=int, help="")
parser.add_argument("--bert_dim", default=768, type=int, help="")
parser.add_argument("--hidden_dim", default=300, type=int, help="")
parser.add_argument("--pos_dim", default=200, type=int, help="The embeding dimension of pos and rel tags.")
parser.add_argument("--span_width_dim", default=50, type=int, help="The linear layer hidden dimension of tag .")
parser.add_argument("--pair_width_dim", default=100, type=int, help="The linear layer hidden dimension of tag .")
parser.add_argument("--dep_dis_dim", default=100, type=int, help="The embeding dimension of pos and rel tags.")
parser.add_argument("--num_epochs", default=50, type=int, help="Total number of training epochs to perform.")
parser.add_argument("--seed", default=4018, type=int, help="Random seed for initialization")
parser.add_argument("--logging_steps", default=30, type=int, help="The interval steps to logging.")
parser.add_argument("--valid_steps", default=50, type=int, help="The interval steps to evaluate model performance.")
parser.add_argument("--device", default="cpu", type=str, help="The device when.")
parser.add_argument("--save_dir", default='checkpoint', type=str, help="The output directory where the model checkpoints will be written.")
return parser.parse_args()
def train(args, train_dataloader, dev_dataloader, pos_vocab_len, dis_vocab_len):
print('初始化模型和优化器...')
model = STABSA(args, pos_vocab_len, dis_vocab_len)
model.to(args.device)
for name, paramater in model.named_parameters():
if 'bert' not in name and 'weight' in name:
init.xavier_normal_(paramater)
no_decay = ['bias', 'LayerNorm.weight']
bert_param_optimizer = list(model.bert.named_parameters())
non_bert_parameters = [[name, param] for name, param in model.named_parameters() if 'bert' not in name]
optimizer_grouped_parameters = [
{'params': [p for n, p in bert_param_optimizer if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay, 'lr': args.bert_learning_rate},
{'params': [p for n, p in bert_param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0,
'lr': args.bert_learning_rate},
{'params': [p for n, p in non_bert_parameters if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay, 'lr': args.linear_learning_rate},
{'params': [p for n, p in non_bert_parameters if any(nd in n for nd in no_decay)], 'weight_decay': 0.0,
'lr': args.linear_learning_rate}
]
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.linear_learning_rate, weight_decay=args.weight_decay)
num_training_steps = len(train_dataloader) * args.num_epochs
num_warmup_steps = num_training_steps * args.warmup_proportion
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps)
weight1 = torch.tensor([1.0,2.0,2.0]).to(args.device)
weight2 = torch.tensor([1.0,2.0,2.0,2.0]).to(args.device)
loss_func1 = nn.CrossEntropyLoss(weight = weight1)
loss_func2 = nn.CrossEntropyLoss(weight = weight2)
tic_train = time.time()
global_step = 0
best_f1 = 0
best_precision = 0
best_recall = 0
loss_list = []
for epoch in range(1, args.num_epochs + 1):
pbar = ProgressBar(n_total=len(train_dataloader), desc='Training')
for batch_idx, batch in enumerate(train_dataloader):
model.train()
optimizer.zero_grad()
bert_input_id, attention_mask, token_type_ids, sentence_len, sentence_mask, bert_seq_len, bert_seq_mask, word_len, \
first_subword_seq, bert_subword_mask_matrix, pos_id, aspect_spans, opinion_spans, sentiments, spans, spans_label, pairs, dep_dis = batch
bert_input_id = torch.tensor(bert_input_id, device=args.device)
attention_mask = torch.tensor(attention_mask, device=args.device)
token_type_ids = torch.tensor(token_type_ids, device=args.device)
pos_id = torch.tensor(pos_id, device=args.device)
bert_subword_mask_matrix = torch.tensor(bert_subword_mask_matrix, device=args.device, dtype=torch.float32)
first_subword_seq = torch.tensor(first_subword_seq, device=args.device)
word_len = torch.tensor(word_len, device=args.device, dtype=torch.float32)
spans_probability, span_indices, pair_probability, pair_indices = model(bert_input_id, attention_mask, token_type_ids, \
bert_subword_mask_matrix, first_subword_seq, pos_id, sentence_len, word_len, dep_dis)
span_preds = spans_probability.reshape([-1, spans_probability.shape[2]])
span_labels = get_span_label(span_indices, aspect_spans, opinion_spans, sentence_len)
pair_preds = pair_probability.reshape([-1, pair_probability.shape[2]])
pair_labels = get_senti_label(pair_indices, pairs, sentiments, sentence_len)
loss1 = loss_func1(span_preds, torch.tensor(span_labels, device=args.device))
loss2 = loss_func2(pair_preds, torch.tensor(pair_labels, device=args.device))
# if epoch < 3:
# loss = loss1
# else:
# loss = loss1 + loss2
loss = 0.5*loss1 + loss2
loss.backward()
optimizer.step()
scheduler.step()
loss_list.append(float(loss))
pbar(batch_idx, {"loss": float(loss)})
print("")
global_step += 1
# evaluation
span_precision, span_recall, span_f1, pair_precision, pair_recall, pair_f1 = evaluate(model, dev_dataloader, args.device)
print(
"Evaluation precision - span: precision: %.5f, recall: %.5f, F1: %.5f" %
(span_precision, span_recall, span_f1))
print(
"Evaluation precision - pair: precision: %.5f, recall: %.5f, F1: %.5f" %
(pair_precision, pair_recall, pair_f1))
if pair_f1 > best_f1:
print(
f"best F1 performence has been updated: {best_f1:.5f} --> {pair_f1:.5f}"
)
best_f1 = pair_f1
best_precision = pair_precision
best_recall = pair_recall
save_dir = os.path.join(args.save_dir, args.dataset_name, "model_best")
if not os.path.exists(save_dir):
os.makedirs(save_dir)
torch.save(model, os.path.join(save_dir, "model.pt"))
time_diff = time.time() - tic_train
loss_avg = sum(loss_list) / len(loss_list)
print("global step %d, epoch: %d, loss: %.5f, speed: %.2f step/s, time: %.2f s"
% (global_step, epoch, loss_avg, len(train_dataloader) / time_diff, time_diff))
tic_train = time.time()
print(f"best P, R, F1 are: {best_precision:.5f}, {best_recall:.5f}, {best_f1:.5f}")
def evaluate(model, data_loader, device):
"""
Given a dataset, it evals model and computes the metric.
Args:
model(obj:`paddle.nn.Layer`): A model to classify texts.
metric(obj:`paddle.metric.Metric`): The evaluation metric.
data_loader(obj:`paddle.io.DataLoader`): The dataset loader which generates batches.
"""
model.eval()
span_num_correct = 0
span_num_infer = 0
span_num_label = 0
pair_num_correct = 0
pair_num_infer = 0
pair_num_label = 0
with torch.no_grad():
for batch_ix, batch in enumerate(data_loader):
bert_input_id, attention_mask, token_type_ids, sentence_len, sentence_mask, bert_seq_len, bert_seq_mask, word_len, \
first_subword_seq, bert_subword_mask_matrix, pos_id, aspect_spans, opinion_spans, sentiments, spans, spans_label, pairs, dep_dis = batch
bert_input_id = torch.tensor(bert_input_id, device=args.device)
attention_mask = torch.tensor(attention_mask, device=args.device)
token_type_ids = torch.tensor(token_type_ids, device=args.device)
pos_id = torch.tensor(pos_id, device=args.device)
bert_subword_mask_matrix = torch.tensor(bert_subword_mask_matrix, device=args.device, dtype=torch.float32)
first_subword_seq = torch.tensor(first_subword_seq, device=args.device)
word_len = torch.tensor(word_len, device=args.device, dtype=torch.float32)
spans_probability, span_indices, pair_probability, pair_indices = model(bert_input_id, attention_mask, token_type_ids, \
bert_subword_mask_matrix, first_subword_seq, pos_id, sentence_len, word_len, dep_dis)
# 方面词和观点词总的P,R,F1
span_preds = spans_probability.reshape([-1, spans_probability.shape[2]])
span_labels = get_span_label(span_indices, aspect_spans, opinion_spans, sentence_len)
span_num_correct += torch.logical_and(torch.tensor(span_labels) == span_preds.cpu().argmax(-1), span_preds.cpu().argmax(-1) != 0).sum().item()
span_num_infer += (span_preds.cpu().argmax(-1) != 0).sum().item()
for i in range(len(aspect_spans)):
span_num_label += len(aspect_spans[i])
span_num_label += len(opinion_spans[i])
# 三元组的P,R,F1
pair_preds = pair_probability.reshape([-1, pair_probability.shape[2]])
pair_labels = get_senti_label(pair_indices, pairs, sentiments, sentence_len)
pair_num_correct += torch.logical_and(torch.tensor(pair_labels) == pair_preds.cpu().argmax(-1), pair_preds.cpu().argmax(-1) != 0).sum().item()
pair_num_infer += (pair_preds.cpu().argmax(-1) != 0).sum().item()
for sentiment in sentiments:
pair_num_label += len(sentiment)
span_precision = float(span_num_correct/span_num_infer) if span_num_infer else 0
span_recall = float(span_num_correct/span_num_label) if span_num_label else 0
span_f1 = float(2 * span_precision * span_recall / (span_precision + span_recall)) if (span_precision + span_recall) else 0
pair_precision = float(pair_num_correct/pair_num_infer) if pair_num_infer else 0
pair_recall = float(pair_num_correct/pair_num_label) if pair_num_label else 0
pair_f1 = float(2 * pair_precision * pair_recall / (pair_precision + pair_recall)) if (pair_precision + pair_recall) else 0
return span_precision, span_recall, span_f1, pair_precision, pair_recall, pair_f1
def test(args, test_dataloader):
print('加载模型...')
model_path = os.path.join(args.save_dir, args.dataset_name, "model_best", "model.pt")
model = torch.load(model_path)
model.to(args.device)
model.eval()
start = time.time()
span_precision, span_recall, span_f1, pair_precision, pair_recall, pair_f1 = evaluate(model, test_dataloader, args.device)
end = time.time()
print(
"Evaluation precision - span: precision: %.5f, recall: %.5f, F1: %.5f" %
(span_precision, span_recall, span_f1))
print(
"Evaluation precision - pair: precision: %.5f, recall: %.5f, F1: %.5f" %
(pair_precision, pair_recall, pair_f1))
print('推理时长{}'.format(end - start))
if __name__ == '__main__':
args = parse_args()
check_args(args)
device(args)
set_seed(args.seed)
print('加载Tokenizer...')
tokenizer = BertTokenizer.from_pretrained(args.bert_model_dir)
args.tokenizer = tokenizer
train_raw, dev_raw, test_raw, pos_vocab, rel_vocab, dis_vocab = load_dataset_vocab(args)
print('加载训练语料...')
train_instances, seq_len, aspect_len, opinion_len = load_data_instances(train_raw, pos_vocab, rel_vocab, dis_vocab, tokenizer, args)
print('最长的bert序列的长度为:', max(seq_len))
print('最长的方面词和观点词长度为:',max(aspect_len), max(opinion_len))
print('加载验证语料...')
dev_instances, seq_len, aspect_len, opinion_len = load_data_instances(dev_raw, pos_vocab, rel_vocab, dis_vocab, tokenizer, args)
print('最长的bert序列的长度为:', max(seq_len))
print('最长的方面词和观点词长度为:',max(aspect_len), max(opinion_len))
print('加载测试语料...')
test_instances, seq_len, aspect_len, opinion_len = load_data_instances(test_raw, pos_vocab, rel_vocab, dis_vocab, tokenizer, args)
print('最长的bert序列的长度为:', max(seq_len))
print('最长的方面词和观点词长度为:',max(aspect_len), max(opinion_len))
train_dataset = Dataset_parser(train_instances, args)
dev_dataset = Dataset_parser(dev_instances, args)
test_dataset = Dataset_parser(test_instances, args)
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, collate_fn=collate_fn)
dev_dataloader = DataLoader(dev_dataset, batch_size=args.batch_size, shuffle=False, collate_fn=collate_fn)
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, collate_fn=collate_fn)
pos_vocab_len, dis_vocab_len = pos_vocab['pos_len'], dis_vocab['dis_len']
print('------------------*训练阶段*-------------------')
train(args, train_dataloader, dev_dataloader, pos_vocab_len, dis_vocab_len)
print('------------------*测试阶段*-------------------')
test(args, test_dataloader)