-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdpo_tie_eval.py
252 lines (225 loc) · 10.7 KB
/
dpo_tie_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import argparse
import os, sys, torch
from copy import deepcopy
from os.path import join
import transformers
from accelerate import Accelerator
from torch.distributed import barrier
from tqdm import tqdm
from transformers import TrainingArguments
import yaml
from torch.nn.utils.rnn import pad_sequence
from trl.trainer.utils import DPODataCollatorWithPadding
from utils.dpo_tie_trainer_eval import DPOInference
sys.path.append('..')
from utils.utils import apply_chat_template
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, HfArgumentParser, set_seed
from datasets import load_dataset
from loguru import logger
IGNORE_INDEX = -100
def create_tie_model(model_args):
if model_args.tokenizer is None:
tokenizer = AutoTokenizer.from_pretrained(model_args.model)
else:
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer)
tokenizer.pad_token_id = tokenizer.eos_token_id if tokenizer.pad_token_id is None else tokenizer.pad_token_id # set as the <unk> token
config = AutoConfig.from_pretrained(model_args.model)
config._attn_implementation = "flash_attention_2"
tokenizer.truncation_side = "left"
if tokenizer.model_max_length > 100_000:
tokenizer.model_max_length = 2048
model = AutoModelForCausalLM.from_pretrained(
model_args.model,
config=config,
trust_remote_code=True,
load_in_8bit=True,
device_map="auto",
torch_dtype=torch.float16 if torch.cuda.is_available() else None,
)
if model_args.ref_model is not None:
ref_model = AutoModelForCausalLM.from_pretrained(
model_args.ref_model,
trust_remote_code=True,
config=config,
load_in_8bit=True,
device_map="auto",
torch_dtype=torch.float16 if torch.cuda.is_available() else None, )
else:
ref_model = None
return model, ref_model, tokenizer
def setup_everything():
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, required=True, help="path to model")
parser.add_argument("--ref_model", type=str, default=None, help="path to model")
parser.add_argument(
"--ref_free_type", type=str, default="avg", help="type of reference free normalization (norm, avg, or sum)"
)
parser.add_argument("--tokenizer", type=str, default=None, help="path to non-matching tokenizer")
parser.add_argument("--do_not_save", action="store_true", help="do not save results to hub (for debugging)")
parser.add_argument("--batch_size", type=int, default=6, help="batch size for inference")
parser.add_argument("--dataset_path", type=str,
default="ultrafeedback_tied/test/non_tie_data_test.jsonl",
help="path of loss data")
parser.add_argument(
"--trust_remote_code", action="store_true", default=False, help="directly load model instead of pipeline"
)
parser.add_argument("--dpo_theta", type=float, default=-0.5, help="-alpha value fot ToDO")
parser.add_argument("--dpo_beta", type=float, default=0.01, help="beta value for DPO and ToDO")
parser.add_argument("--debug", type=bool, default=False, help="use only 10 examples")
parser.add_argument("--original_reward", type=int, default=0, help="whether to use original reward")
parser.add_argument(
"--disable_beaker_save", action="store_true", help="disable saving the main results in a file for AI2 Beaker"
)
set_seed(42)
args = parser.parse_args()
return args
BATCH_SIZE = 8
def main():
accelerator = Accelerator()
model_args = setup_everything()
print("model_args.original_reward is ", model_args.original_reward)
# return
model, ref_model, tokenizer = create_tie_model(model_args)
if model_args.ref_model is None:
ref_free = True
else:
ref_free = False
dataset = load_dataset("json", data_files=model_args.dataset_path, split="train")
if model_args.debug:
dataset = dataset.select(range(30))
column_names = list(dataset.features)
dataset = dataset.map(
apply_chat_template,
fn_kwargs={"tokenizer": tokenizer, "task": "dpo"},
num_proc=8,
remove_columns=column_names,
desc="Formatting comparisons with prompt template",
load_from_cache_file=False
)
dataset = dataset.rename_columns(
{"text_prompt": "prompt"})
dpo = DPOInference(
model=model,
ref_model=ref_model,
beta=model_args.dpo_beta,
theta=model_args.dpo_theta,
tokenizer=tokenizer,
accelerator=accelerator,
ref_free_norm=model_args.ref_free_type,
# norm is norm, avg is average, sum is sum
)
# tokenize dataset
column_names = list(dataset.features)
print(column_names)
tokenized_dataset = dataset.map(dpo.build_tie_batch, remove_columns=column_names)
BATCH_SIZE=model_args.batch_size
dataloader = torch.utils.data.DataLoader(
tokenized_dataset,
batch_size=BATCH_SIZE,
collate_fn=DPODataCollatorWithPadding(
pad_token_id=tokenizer.pad_token_id,
label_pad_token_id=dpo.label_pad_token_id,
is_encoder_decoder=dpo.is_encoder_decoder,
),
# collate_fn = lambda x: x, # fix weird batching error
shuffle=False,
drop_last=False,
)
results = []
scores_chosen = []
scores_tie = []
scores_rejected = []
tie_labels = []
binary_results = []
if model_args.original_reward==0:
logger.info("start binary inference")
for step, batch in enumerate(tqdm(dataloader, desc="RM batch steps")):
logger.info(f"RM inference step {step}/{len(dataloader)}")
rewards_chosen, reward_tie, rewards_rejected = dpo.inference_step(batch, ref_free=ref_free,
tie_inference=False)
# for each item in batch, record 1 if chosen > rejected
# extra score from dict within batched results (e.g. logits)
# [{'label': 'LABEL_1', 'score': 0.6826171875},... ]
if isinstance(rewards_chosen[0], dict):
scores_chosen_batch = [result["score"] for result in rewards_chosen]
# scores_tie_batch = [result["tie"] for result in reward_tie]
scores_rejected_batch = [result["score"] for result in rewards_rejected]
# for classes that directly output scores (custom code)
else:
scores_chosen_batch = rewards_chosen.cpu().numpy().tolist()
# scores_tie_batch = reward_tie.cpu().numpy().tolist()
scores_rejected_batch = rewards_rejected.cpu().numpy().tolist()
for item, chosen, rejected in zip(batch["tie"], scores_chosen_batch,
scores_rejected_batch):
if item == True:
continue
else:
if chosen == max(chosen, rejected):
results.append(1)
else:
results.append(0)
scores_chosen += scores_chosen_batch
scores_rejected += scores_rejected_batch
tie_labels += batch["tie"]
print("evaluation acc")
save_path = os.path.join(model_args.model, "original_valid_reward")
assert save_path is not None
if not os.path.exists(save_path):
os.makedirs(save_path)
import json
print("validation accuracy is : ", sum(results) / len(results))
print("save data path is : ", save_path + "/score_results.json")
with open(os.path.join(save_path, "score_results.json"), 'w') as f:
f.write(json.dumps(
{"scores_chosen": scores_chosen, "scores_rejected": scores_rejected, "scores_tie": scores_tie,
"tie_labels": tie_labels, "results": results, "accuracy": sum(results) / len(results)}))
elif model_args.original_reward==1:
logger.info("start tie inference")
for step, batch in enumerate(tqdm(dataloader, desc="RM batch steps")):
logger.info(f"RM inference step {step}/{len(dataloader)}")
rewards_chosen, reward_tie, rewards_rejected = dpo.inference_step(batch, ref_free=ref_free,
tie_inference=True, tie_type="tie_loss")
# for each item in batch, record 1 if chosen > rejected
# extra score from dict within batched results (e.g. logits)
# [{'label': 'LABEL_1', 'score': 0.6826171875},... ]
if isinstance(rewards_chosen[0], dict):
scores_chosen_batch = [result["score"] for result in rewards_chosen]
scores_tie_batch = [result["tie"] for result in reward_tie]
scores_rejected_batch = [result["score"] for result in rewards_rejected]
# for classes that directly output scores (custom code)
else:
scores_chosen_batch = rewards_chosen.cpu().numpy().tolist()
scores_tie_batch = reward_tie.cpu().numpy().tolist()
scores_rejected_batch = rewards_rejected.cpu().numpy().tolist()
for item, chosen, tie, rejected in zip(batch["tie"], scores_chosen_batch, scores_tie_batch,
scores_rejected_batch):
if item == True:
if tie == max(chosen, tie, rejected):
results.append(1)
else:
results.append(0)
else:
if chosen == max(chosen, tie, rejected):
results.append(1)
binary_results.append(1)
else:
results.append(0)
binary_results.append(0)
scores_chosen += scores_chosen_batch
scores_rejected += scores_rejected_batch
scores_tie += scores_tie_batch
tie_labels += batch["tie"]
save_path = os.path.join(model_args.model, "triple_valid_reward")
assert save_path is not None
if not os.path.exists(save_path):
os.makedirs(save_path)
import json
print("binary_accuracy is : ", sum(binary_results) / len(binary_results))
print("validation accuracy is : ", sum(results) / len(results))
print("save data path is : ", save_path + "/score_results.json")
with open(os.path.join(save_path, "score_results.json"), 'w') as f:
f.write(json.dumps(
{"scores_chosen": scores_chosen, "scores_rejected": scores_rejected, "scores_tie": scores_tie,
"tie_labels": tie_labels, "results": results, "accuracy": sum(results) / len(results)}))
if __name__ == "__main__":
main()