-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils_spiral.py
417 lines (350 loc) · 16.7 KB
/
utils_spiral.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import numpy as np
from random import choice
## Note: Non-smooth surfaces or bad triangulations may lead to non-spiral orderings of the vertices.
## Common issue in badly triangulated surfaces is that there exist some edges that belong to more than two triangles. In this
## case the mathematical definition of the spiral is insufficient. In this case, in this version of the code, we randomly
## choose two triangles in order to continue the inductive assignment of the order to the rest of the vertices.
def get_adj_trigs(A, F, reference_mesh, meshpackage = 'mpi-mesh'):
Adj = []
for x in A:
adj_x = []
dx = x.todense()
for i in range(x.shape[0]):
adj_x.append(dx[i].nonzero()[1])
Adj.append(adj_x)
if meshpackage =='trimesh':
mesh_faces = reference_mesh.faces
elif meshpackage =='mpi-mesh':
mesh_faces = reference_mesh.f
# Create Triangles List
trigs_full = [[] for i in range(len(Adj[0]))]
for t in mesh_faces:
u, v, w = t
trigs_full[u].append((u,v,w))
trigs_full[v].append((u,v,w))
trigs_full[w].append((u,v,w))
Trigs = [trigs_full]
for i,T in enumerate(F):
trigs_down = [[] for i in range(len(Adj[i+1]))]
for u,v,w in T:
trigs_down[u].append((u,v,w))
trigs_down[v].append((u,v,w))
trigs_down[w].append((u,v,w))
Trigs.append(trigs_down)
return Adj, Trigs
def generate_spirals(step_sizes, M, Adj, Trigs, reference_points, dilation=None, random=False, meshpackage = 'mpi-mesh', counter_clockwise = True, nb_stds = 2):
Adj_spirals = []
for i in range(len(Adj)):
if meshpackage =='trimesh':
mesh_vertices = M[i].vertices
elif meshpackage =='mpi-mesh':
mesh_vertices = M[i].v
sp = get_spirals(mesh_vertices, Adj[i],Trigs[i],reference_points[i], n_steps=step_sizes[i],\
padding='zero', counter_clockwise = counter_clockwise, random = random)
Adj_spirals.append(sp)
print('spiral generation for hierarchy %d (%d vertices) finished' %(i,len(Adj_spirals[-1])))
## Dilated convolution
if dilation:
for i in range(len(dilation)):
dil = dilation[i]
dil_spirals = []
for j in range(len(Adj_spirals[i])):
s = Adj_spirals[i][j][:1] + Adj_spirals[i][j][1::dil]
dil_spirals.append(s)
Adj_spirals[i] = dil_spirals
# Calculate the lengths of spirals
# Use mean + 2 * std_dev, to capture 97% of data
L = []
for i in range(len(Adj_spirals)):
L.append([])
for j in range(len(Adj_spirals[i])):
L[i].append(len(Adj_spirals[i][j]))
L[i] = np.array(L[i])
spiral_sizes = []
for i in range(len(L)):
sz = L[i].mean() + nb_stds*L[i].std()
spiral_sizes.append(int(sz))
print('spiral sizes for hierarchy %d: %d' %(i,spiral_sizes[-1]))
# 1) fill with -1 (index to the dummy vertex, i.e the zero padding) the spirals with length smaller than the chosen one
# 2) Truncate larger spirals
spirals_np = []
for i in range(len(spiral_sizes)): #len(Adj_spirals)):
S = np.zeros((1,len(Adj_spirals[i])+1,spiral_sizes[i])) - 1
for j in range(len(Adj_spirals[i])):
S[0,j,:len(Adj_spirals[i][j])] = Adj_spirals[i][j][:spiral_sizes[i]]
#spirals_np.append(np.repeat(S,args['batch_size'],axis=0))
spirals_np.append(S)
return spirals_np, spiral_sizes, Adj_spirals
def distance(v,w):
return np.sqrt(np.sum(np.square(v-w)))
def single_source_shortest_path(V,E,source,dist=None,prev=None):
import heapq
if dist == None:
dist = [None for i in range(len(V))]
prev = [None for i in range(len(V))]
q = []
seen = set()
heapq.heappush(q,(0,source,None))
while len(q) > 0 and len(seen) < len(V):
d_,v,p = heapq.heappop(q)
if v in seen:
continue
seen.add(v)
prev[v] = p
dist[v] = d_
for w in E[v]:
if w in seen:
continue
dw = d_ + distance(V[v],V[w])
heapq.heappush(q,(dw,w,v))
return prev, dist
def get_spirals(mesh, adj, trig, reference_points, n_steps=1, padding='zero', counter_clockwise = True, random = False):
spirals = []
if not random:
heat_path = None
dist = None
for reference_point in reference_points:
heat_path,dist = single_source_shortest_path(mesh,adj,reference_point, dist, heat_path)
heat_source = reference_points
for i in range(mesh.shape[0]):
seen = set(); seen.add(i)
trig_central = list(trig[i]); A = adj[i]; spiral = [i]
# 1) Frist degree of freedom - choose starting pooint:
if not random:
if i in heat_source: # choose closest neighbor
shortest_dist = np.inf
init_vert = None
for neighbor in A:
d = np.sum(np.square(mesh[i] - mesh[neighbor]))
if d < shortest_dist:
shortest_dist = d
init_vert = neighbor
else: # on the shortest path to the reference point
init_vert = heat_path[i]
else:
# choose starting point:
# random for first ring
init_vert = choice(A)
# first ring
if init_vert is not None:
ring = [init_vert]; seen.add(init_vert)
else:
ring = []
while len(trig_central) > 0 and init_vert is not None:
cur_v = ring[-1]
cur_t = [t for t in trig_central if t in trig[cur_v]]
if len(ring) == 1:
orientation_0 = (cur_t[0][0]==i and cur_t[0][1]==cur_v) \
or (cur_t[0][1]==i and cur_t[0][2]==cur_v) \
or (cur_t[0][2]==i and cur_t[0][0]==cur_v)
if not counter_clockwise:
orientation_0 = not orientation_0
# 2) Second degree of freedom - 2nd point/orientation ambiguity
if len(cur_t) >=2:
# Choose the triangle that will direct the spiral counter-clockwise
if orientation_0:
# Third point in the triangle - next vertex in the spiral
third = [p for p in cur_t[0] if p!=i and p!=cur_v][0]
trig_central.remove(cur_t[0])
else:
third = [p for p in cur_t[1] if p!=i and p!=cur_v][0]
trig_central.remove(cur_t[1])
ring.append(third)
seen.add(third)
# 3) Stop if the spiral hits the boundary in the first point
elif len(cur_t) == 1:
break
else:
# 4) Unique ordering for the rest of the points (3rd onwards)
if len(cur_t) >= 1:
# Third point in the triangle - next vertex in the spiral
third = [p for p in cur_t[0] if p!= cur_v and p!=i][0]
# Don't append the spiral if the vertex has been visited already
# (happens when the first ring is completed and the spiral returns to the central vertex)
if third not in seen:
ring.append(third)
seen.add(third)
trig_central.remove(cur_t[0])
# 4) Stop when the spiral hits the boundary (the already visited triangle is no longer in the list): First half of the spiral
elif len(cur_t) == 0:
break
rev_i = len(ring)
if init_vert is not None:
v = init_vert
if orientation_0 and len(ring)==1:
reverse_order = False
else:
reverse_order = True
need_padding = False
# 5) If on the boundary: restart from the initial vertex towards the other direction,
# but put the vertices in reverse order: Second half of the spiral
# One exception if the starting point is on the boundary + 2nd point towards the desired direction
while len(trig_central) > 0 and init_vert is not None:
cur_t = [t for t in trig_central if t in trig[v]]
if len(cur_t) != 1:
break
else:
need_padding = True
third = [p for p in cur_t[0] if p!=v and p!=i][0]
trig_central.remove(cur_t[0])
if third not in seen:
ring.insert(rev_i,third)
seen.add(third)
if not reverse_order:
rev_i = len(ring)
v = third
# Add a dummy vertex between the first half of the spiral and the second half - similar to zero padding in a 2d grid
if need_padding:
ring.insert(rev_i,-1)
"""
ring_copy = list(ring[1:])
rev_i = rev_i - 1
for z in range(len(ring_copy)-2):
if padding == 'zero':
ring.insert(rev_i,-1) # -1 is our sink node
elif padding == 'mirror':
ring.insert(rev_i,ring_copy[rev_i-z-1])
"""
spiral += ring
# Next rings:
for step in range(n_steps-1):
next_ring = set([]); next_trigs = set([]);
if len(ring) == 0:
break
base_triangle = None
init_vert = None
# Find next hop neighbors
for w in ring:
if w!=-1:
for u in adj[w]:
if u not in seen:
next_ring.add(u)
# Find triangles that contain two outer ring nodes. That way one can folllow the spiral ordering in the same way
# as done in the first ring: by simply discarding the already visited triangles+nodes.
for u in next_ring:
for tr in trig[u]:
if len([x for x in tr if x in seen]) == 1:
next_trigs.add(tr)
elif ring[0] in tr and ring[-1] in tr:
base_triangle = tr
# Normal case: starting point in the second ring ->
# the 3rd point in the triangle that connects the 1st and the last point in the 1st ring with the 2nd ring
if base_triangle is not None:
init_vert = [x for x in base_triangle if x != ring[0] and x != ring[-1]]
# Make sure that the the initial point is appropriate for starting the spiral,
# i.e it is connected to at least one of the next candidate vertices
if len(list(next_trigs.intersection(set(trig[init_vert[0]]))))==0:
init_vert = None
# If no such triangle exists (one of the vertices is dummy,
# or both the first and the last vertex take part in a specific type of boundary)
# or the init vertex is not connected with the rest of the ring -->
# Find the relative point in the the triangle that connects the 1st point with the 2nd, or the 2nd with the 3rd
# and so on and so forth. Note: This is a slight abuse of the spiral topology
if init_vert is None:
for r in range(len(ring)-1):
if ring[r] !=-1 and ring[r+1]!=-1:
tr = [t for t in trig[ring[r]] if t in trig[ring[r+1]]]
for t in tr:
init_vert = [v for v in t if v not in seen]
# make sure that the next vertex is appropriate to start the spiral ordering in the next ring
if len(init_vert)>0 and len(list(next_trigs.intersection(set(trig[init_vert[0]]))))>0:
break
else:
init_vert = []
if len(init_vert)>0 and len(list(next_trigs.intersection(set(trig[init_vert[0]]))))>0:
break
else:
init_vert = []
# The rest of the procedure is the same as the first ring
if init_vert is None:
init_vert = []
if len(init_vert)>0:
init_vert = init_vert[0]
ring = [init_vert]
seen.add(init_vert)
else:
init_vert = None
ring = []
# if i == 57:
# import pdb;pdb.set_trace()
while len(next_trigs) > 0 and init_vert is not None:
cur_v = ring[-1]
cur_t = list(next_trigs.intersection(set(trig[cur_v])))
if len(ring) == 1:
try:
orientation_0 = (cur_t[0][0] in seen and cur_t[0][1]==cur_v) \
or (cur_t[0][1] in seen and cur_t[0][2]==cur_v) \
or (cur_t[0][2] in seen and cur_t[0][0]==cur_v)
except:
import pdb;pdb.set_trace()
if not counter_clockwise:
orientation_0 = not orientation_0
# 1) orientation ambiguity for the next ring
if len(cur_t) >=2:
# Choose the triangle that will direct the spiral counter-clockwise
if orientation_0:
# Third point in the triangle - next vertex in the spiral
third = [p for p in cur_t[0] if p not in seen and p!=cur_v][0]
next_trigs.remove(cur_t[0])
else:
third = [p for p in cur_t[1] if p not in seen and p!=cur_v][0]
next_trigs.remove(cur_t[1])
ring.append(third)
seen.add(third)
# 2) Stop if the spiral hits the boundary in the first point
elif len(cur_t) == 1:
break
else:
# 3) Unique ordering for the rest of the points
if len(cur_t) >= 1:
third = [p for p in cur_t[0] if p != v and p not in seen]
next_trigs.remove(cur_t[0])
if len(third)>0:
third = third[0]
if third not in seen:
ring.append(third)
seen.add(third)
else:
break
# 4) Stop when the spiral hits the boundary
# (the already visited triangle is no longer in the list): First half of the spiral
elif len(cur_t) == 0:
break
rev_i = len(ring)
if init_vert is not None:
v = init_vert
if orientation_0 and len(ring)==1:
reverse_order = False
else:
reverse_order = True
need_padding = False
while len(next_trigs) > 0 and init_vert is not None:
cur_t = [t for t in next_trigs if t in trig[v]]
if len(cur_t) != 1:
break
else:
need_padding = True
third = [p for p in cur_t[0] if p!=v and p not in seen]
next_trigs.remove(cur_t[0])
if len(third)>0:
third = third[0]
if third not in seen:
ring.insert(rev_i,third)
seen.add(third)
if not reverse_order:
rev_i = len(ring)
v = third
if need_padding:
ring.insert(rev_i,-1)
"""
ring_copy = list(ring[1:])
rev_i = rev_i - 1
for z in range(len(ring_copy)-2):
if padding == 'zero':
ring.insert(rev_i,-1) # -1 is our sink node
elif padding == 'mirror':
ring.insert(rev_i,ring_copy[rev_i-z-1])
"""
spiral += ring
spirals.append(spiral)
return spirals