-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_scannet.sh
243 lines (189 loc) · 9.39 KB
/
run_scannet.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#!/bin/bash
{
REPO_DIR="$1"
SCENE_ID="$2"
RUN_TRAIN="$3"
# conda activate ${CONDA_ENV_NAME}
export PYTHONPATH=${REPO_DIR}:$PYTHONPATH
SEED=123
N_PATCHES_H=1
N_PATCHES_W=1
# MRF related
UNARY=1
FACE_AREA_PENALTY=1e-3
DEPTH_PENALTY=-10
PERCEPT_PENALTY=-1
DUMMY_PENALTY=-15
DATA_DIR=${REPO_DIR}/dataset
EXP_DIR=${REPO_DIR}/experiments/scannet
MRF_BIN=${REPO_DIR}/advtex_init_align/tex_init/tex_init
MTL_ATLAS_SIZE=15
N_ITERS_MP=0
N_SUBDIV=0
N_MESH_SPLITS=30
MTL_RES=2048
if [ "${UNARY}" == "1" ]; then
MRF_NAME="unary"
MRF_DIR_NAME="output_obj_argmax_${MTL_RES}_${MTL_RES}_500"
else
MRF_NAME="pairwise"
MRF_DIR_NAME="output_obj_mp_only_adj_${MTL_RES}_${MTL_RES}_500"
fi
printf '\nmrf output folder %s\n' ${MRF_DIR_NAME}
SAMPLE_FREQ_FOR_TRAIN=0
if [ "${SAMPLE_FREQ_FOR_TRAIN}" == "1" ]; then
DIR_PREFIX="train"
else
DIR_PREFIX="test"
fi
ulimit -n 65000;
MKL_THREADING_LAYER=GNU;
SAMPLE_FREQS=(10)
printf '\nall freqs %s\n' "${SAMPLE_FREQS[@]}"
for sample_freq in "${SAMPLE_FREQS[@]}";
do
total_start="$(date -u +%s)"
if [ "${RUN_TRAIN}" == "run_train" ]; then
printf "\nprocess sampling frequency: %s\n" ${sample_freq}
# read data from .sens file
printf "\nstart reading raw data from .sens file ...\n"
python ${REPO_DIR}/advtex_init_align/data/scannet/reader.py \
--filename ${DATA_DIR}/scannet_raw/${SCENE_ID}/${SCENE_ID}.sens \
--output_path ${DATA_DIR}/scannet/${SCENE_ID} \
--export_depth_images \
--export_color_images \
--export_poses \
--export_intrinsics
printf "\n... done reading raw data.\n"
# convert raw data to Apple's stream file
printf "\nstart converting to Apple's stream file ...\n"
python ${REPO_DIR}/advtex_init_align/data/format_converter/convert_scannet_to_apple_stream.py \
--data_dir ${DATA_DIR}/scannet/${SCENE_ID} \
--mesh_f ${DATA_DIR}/scannet/${SCENE_ID}/${SCENE_ID}_vh_clean_2.ply \
--out_dir ${EXP_DIR}/${SCENE_ID}/full
printf "\n... done converting to stream file.\n"
# subsample training view indexs
printf "\nstart generating new stream file ...\n"
python ${REPO_DIR}/advtex_init_align/data/gen_train_stream.py \
--stream_dir_list ${EXP_DIR}/${SCENE_ID}/full \
--save_dir ${EXP_DIR}/${SCENE_ID} \
--sample_freq_list ${sample_freq} \
--sample_freq_for_train ${SAMPLE_FREQ_FOR_TRAIN} \
--stream_type scannet
printf "\n... done generating new stream file\n"
# split mesh into sub-meshes
export OMP_NUM_THREADS=10 && \
${MRF_BIN} \
--data_dir ${EXP_DIR}/${SCENE_ID}/${DIR_PREFIX}_1_${sample_freq} \
--debug 0 \
--debug_mesh_shape 0 \
--align_arg_max ${UNARY} \
--n_iter_mp ${N_ITERS_MP} \
--n_workers 10 --mtl_width ${MTL_RES} --mtl_height ${MTL_RES} \
--n_extrude_pixels 0 \
--iter_subdiv ${N_SUBDIV} --stream_type 2 \
--preprocess_split_mesh ${N_MESH_SPLITS}
ln -s ${EXP_DIR}/${SCENE_ID}/${DIR_PREFIX}_1_${sample_freq}/Recv.stream ${EXP_DIR}/${SCENE_ID}/${DIR_PREFIX}_1_${sample_freq}/splitted_mesh_${N_MESH_SPLITS}/Recv.stream
# run MRF
printf "\nstart running MRF ...\n"
export OMP_NUM_THREADS=10 && \
${MRF_BIN} \
--data_dir ${EXP_DIR}/${SCENE_ID}/${DIR_PREFIX}_1_${sample_freq}/splitted_mesh_${N_MESH_SPLITS} \
--debug 1 \
--debug_mesh_shape 0 \
--align_arg_max ${UNARY} \
--n_iter_mp ${N_ITERS_MP} \
--n_workers 10 --mtl_width ${MTL_RES} --mtl_height ${MTL_RES} \
--n_extrude_pixels 0 \
--iter_subdiv ${N_SUBDIV} --stream_type 2 \
--unary_potential_dummy ${DUMMY_PENALTY} \
--remesh 0 \
--bin_pack_type 3 --n_areas_per_plate_bin_pack 500 \
--debug_mesh_shape 0 --conformal_map 1 --compact_mtl 1 --top_one_mtl 1 \
--penalty_face_area ${FACE_AREA_PENALTY} \
--penalty_face_cam_dist ${DEPTH_PENALTY} \
--penalty_face_v_perception_consist ${PERCEPT_PENALTY} \
--pair_potential_mp 1 \
--pair_potential_off_diag_scale_depth 0 \
--pair_potential_off_diag_scale_percept 0
printf "\n... done running MRF\n"
# ScanNet has thousands of high-res images. We save them on disk for later fast IO.
python ${REPO_DIR}/advtex_init_align/data/prepare_for_scannet.py \
--stream_f_list ${EXP_DIR}/${SCENE_ID}/${DIR_PREFIX}_1_${sample_freq}/Recv.stream \
--save_dir ${EXP_DIR}/${SCENE_ID}/${DIR_PREFIX}_1_${sample_freq}/prepare \
--stream_type scannet
# generate L2 averaged texture
printf "\nstart generating L2 averaged texture ...\n"
python ${REPO_DIR}/advtex_init_align/data/gen_avg_mtl.py \
--stream_f_list ${EXP_DIR}/${SCENE_ID}/${DIR_PREFIX}_1_${sample_freq}/Recv.stream \
--obj_f_list ${EXP_DIR}/${SCENE_ID}/${DIR_PREFIX}_1_${sample_freq}/splitted_mesh_${N_MESH_SPLITS}/${MRF_DIR_NAME}/TexAlign.obj \
--save_dir ${EXP_DIR}/${SCENE_ID}/${DIR_PREFIX}_1_${sample_freq}/avg_${MTL_RES}_${MTL_RES}_atlas_${MTL_ATLAS_SIZE} \
--atlas_size ${MTL_ATLAS_SIZE} \
--debug_vis 0 \
--fuse 1 \
--directly_fuse 0 \
--stream_type scannet \
--scannet_data_dir ${EXP_DIR}/${SCENE_ID}/${DIR_PREFIX}_1_${sample_freq}/prepare/data
printf "\n... done generating L2 averaged texture\n"
# start format converting
printf "\nstart converting results into AdvOptim format ...\n"
python ${REPO_DIR}/advtex_init_align/data/format_converter/convert_mrf_result_to_adv_tex.py \
--stream_f_list ${EXP_DIR}/${SCENE_ID}/${DIR_PREFIX}_1_${sample_freq}/Recv.stream \
--obj_f_list ${EXP_DIR}/${SCENE_ID}/${DIR_PREFIX}_1_${sample_freq}/splitted_mesh_${N_MESH_SPLITS}/${MRF_DIR_NAME}/fused/TexAlign.obj \
--save_dir ${EXP_DIR}/${SCENE_ID}/${DIR_PREFIX}_1_${sample_freq}/splitted_mesh_${N_MESH_SPLITS}/optim/${MRF_NAME}_${MTL_RES}_${MTL_RES}_atlas_${MTL_ATLAS_SIZE}/fused \
--atlas_size ${MTL_ATLAS_SIZE} \
--already_single_mtl 0 \
--for_train 1 \
--stream_type scannet \
--scannet_data_dir ${EXP_DIR}/${SCENE_ID}/${DIR_PREFIX}_1_${sample_freq}/prepare/data
printf "\n... done converting our MRF into AdvOptim format.\n"
# Run AdvTex
python ${REPO_DIR}/advtex_init_align/tex_smooth/optim_patch_torch.py \
--seed ${SEED} \
--use_mislaign_offset 1 \
--from_scratch 0 \
--n_patches_h 1 \
--n_patches_w 1 \
--input_dir ${EXP_DIR}/${SCENE_ID}/${DIR_PREFIX}_1_${sample_freq}/splitted_mesh_${N_MESH_SPLITS}/optim/${MRF_NAME}_${MTL_RES}_${MTL_RES}_atlas_${MTL_ATLAS_SIZE}/fused
cp -r ${EXP_DIR}/${SCENE_ID}/${DIR_PREFIX}_1_${sample_freq}/splitted_mesh_${N_MESH_SPLITS}/optim/${MRF_NAME}_${MTL_RES}_${MTL_RES}_atlas_${MTL_ATLAS_SIZE}/seed_${SEED}-scratch_0-offset_1_n_patch_h_${N_PATCHES_H}_w_${N_PATCHES_W}/shape/ ${EXP_DIR}/${SCENE_ID}/optimized_texture_${DIR_PREFIX}_1_${sample_freq}
else
# save GT images to disk
# We set prepare_for_test_only to 1 since it will be really costly to render all (train + test) images for ScanNet
python ${REPO_DIR}/advtex_init_align/data/format_converter/convert_mrf_result_to_adv_tex.py \
--stream_f_list ${EXP_DIR}/${SCENE_ID}/full/Recv.stream \
--obj_f_list ${EXP_DIR}/${SCENE_ID}/${DIR_PREFIX}_1_${sample_freq}/splitted_mesh_${N_MESH_SPLITS}/${MRF_DIR_NAME}/fused/TexAlign.obj \
--save_dir ${EXP_DIR}/${SCENE_ID}/${DIR_PREFIX}_1_${sample_freq}/raw_infos_for_test \
--atlas_size ${MTL_ATLAS_SIZE} \
--already_single_mtl 1 \
--for_train 0 \
--stream_type scannet \
--pure_save_gt_info 1 \
--pure_save_gt_info_rgb_only 0 \
--prepare_for_test_only 1 \
--train_idx_to_raw_idx_map_f ${EXP_DIR}/${SCENE_ID}/${DIR_PREFIX}_1_${sample_freq}/train_idx_to_raw_idx_map.json
# Render from optimized texture
python ${REPO_DIR}/advtex_init_align/data/format_converter/convert_mrf_result_to_adv_tex.py \
--stream_f_list ${EXP_DIR}/${SCENE_ID}/full/Recv.stream \
--obj_f_list ${EXP_DIR}/${SCENE_ID}/${DIR_PREFIX}_1_${sample_freq}/splitted_mesh_${N_MESH_SPLITS}/optim/${MRF_NAME}_${MTL_RES}_${MTL_RES}_atlas_${MTL_ATLAS_SIZE}/seed_${SEED}-scratch_0-offset_1_n_patch_h_${N_PATCHES_H}_w_${N_PATCHES_W}/shape/TexAlign.obj \
--save_dir ${EXP_DIR}/${SCENE_ID}/${DIR_PREFIX}_1_${sample_freq}/splitted_mesh_${N_MESH_SPLITS}/optim/${MRF_NAME}_${MTL_RES}_${MTL_RES}_atlas_${MTL_ATLAS_SIZE}/seed_${SEED}-scratch_0-offset_1_n_patch_h_${N_PATCHES_H}_w_${N_PATCHES_W} \
--atlas_size ${MTL_ATLAS_SIZE} \
--already_single_mtl 1 \
--for_train 0 \
--stream_type scannet \
--scannet_data_dir ${EXP_DIR}/${SCENE_ID}/${DIR_PREFIX}_1_${sample_freq}/raw_infos_for_test
# Compute metrics
python ${REPO_DIR}/advtex_init_align/eval/compute_metrics.py \
--nproc 10 \
--dataset scannet \
--scene_id ${SCENE_ID} \
--save_dir ${EXP_DIR}/${SCENE_ID}/${DIR_PREFIX}_1_${sample_freq}/eval_results \
--sample_freq_list ${DIR_PREFIX}_1_${sample_freq} \
--method_id_list scannet_adv_optim_mrf_unary_offset_patch_1x1 \
--compute_s3 0
fi
total_end="$(date -u +%s)"
elapsed="$(($total_end-$total_start))"
printf "\nTotal time elapsed %f\n" $elapsed
done
exit;
}