forked from luisdamiano/BayesHMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
specifications.R
445 lines (396 loc) · 11.1 KB
/
specifications.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
# OBSERVATION MODEL -------------------------------------------------------
K = 3
R = 2
# Case 1. A different multivariate density for each state
# Input: K multivariate densities
# Behaviour: Nothing
exCase1 <- hmm(
K = K, R = R,
observation =
MVGaussianCor(
mu = Gaussian(mu = 0, sigma = 1),
L = LKJCor(eta = 2)
) +
MVGaussianCor(
mu = Gaussian(mu = 0, sigma = 10),
L = LKJCor(eta = 3)
) +
MVGaussianCor(
mu = Gaussian(mu = 0, sigma = 100),
L = LKJCor(eta = 4)
),
initial = Default(),
transition = Default(),
name = "A different multivariate density for each each state"
)
# Case 2. Same multivariate density for every state
# Input: One multivariate density
# Behaviour: Repeat input K times
exCase2 <- hmm(
K = K, R = R,
observation =
MVGaussianCor(
mu = Gaussian(mu = 0, sigma = 100),
L = LKJCor(eta = 2)
),
initial = Default(),
transition = Default(),
name = "Same multivariate density for every state"
)
# Case 3. Same univariate density for every state and every output variable
# Input: One univariate density
# Behaviour: Repeat input K %nested% R times
exCase3 <- hmm(
K = K, R = R,
observation =
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
),
initial = Default(),
transition = Default(),
name = "Same univariate density for every state and every output variable"
)
# Case 4. Same R univariate densities for every state
# Input: R univariate densities
# Behaviour: Repeat input K times
exCase4 <- hmm(
K = K, R = R,
observation =
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
) +
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
),
initial = Default(),
transition = Default(),
name = "Same R univariate densities for every state"
)
# Case 5. Same univariate density for every output variable
# Input: K univariate densities
# Behaviour: Repeat input R times
exCase5 <- hmm(
K = K, R = R,
observation =
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
) +
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
) +
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
),
initial = Default(),
transition = Default(),
name = "Same univariate density for every output variable"
)
# Case 6. Different univariate densities for every pair of state and output variable
# Input: K %nested% R univariate densities
# Behaviour: None
exCase6 <- hmm(
K = K, R = R,
observation =
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
) +
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
) +
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
) +
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
) +
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
) +
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
),
initial = Default(),
transition = Default(),
name = "Different univariate densities for every pair of state and output variable"
)
# UNIVARIATE Observation model --------------------------------------------
K = 3
R = 1
# Case 7. A different univariate density for each each state
# Input: K univariate densities
# Behaviour: Nothing
exCase7 <- hmm(
K = K, R = R,
observation =
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
) +
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
) +
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
),
initial = Default(),
transition = Default(),
name = "A different univariate density for each each state"
)
# Case 8. Same univariate density for every state
# Input: One univariate density
# Behaviour: Repeat input K times
exCase8 <- hmm(
K = K, R = R,
observation =
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
),
initial = Default(),
transition = Default(),
name = "Same multivariate density for every state"
)
# INITIAL MODEL -----------------------------------------------------------
K = 3
R = 2
# Case 9. Same univariate density for every initial state
# Input: One univariate density
# Behaviour: Repeat input K times
exCase9 <- hmm(
K = K, R = R,
observation =
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
),
initial =
Beta(
alpha = Gaussian(0, 1),
beta = Gaussian(1, 10)
),
transition = Default(),
name = "Same univariate density for every initial state"
)
write_model(exCase9, noLogLike = FALSE, "out")
# Case 10. One multivariate density for the whole initial vector
# Input: One multivariate density
# Behaviour: Nothing
exCase10 <- hmm(
K = K, R = R,
observation =
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
),
initial =
Dirichlet(
alpha = Default()
),
transition = Default(),
name = "One multivariate density for the whole initial vector"
)
write_model(exCase10, noLogLike = FALSE, "out")
# Case 11. A different univariate density for each initial state
# Input: K univariate densities
# Behaviour: Nothing
exCase11 <- hmm(
K = K, R = R,
observation =
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
),
initial =
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
) +
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
) +
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
),
transition = Default(),
name = "A different univariate density for each initial state"
)
write_model(exCase11, noLogLike = FALSE, "out")
# Case 12. A link
# Input: One link density
# Behaviour: Nothing
exCase12 <- hmm(
K = K, R = R,
observation =
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
),
initial =
InitialSoftmax(
vBeta = Default()
),
transition = Default(),
name = "TV Initial distribution"
)
write_model(exCase12, noLogLike = FALSE, "out")
# TRANSITION MODEL --------------------------------------------------------
K = 3
R = 2
# Case 13. Same univariate density for every transition
# Input: One univariate density
# Behaviour: Repeat input KxK times
exCase13 <- hmm(
K = K, R = R,
observation =
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
),
initial = Dirichlet(alpha = c(0.5, 0.5, 0.5)),
transition =
Gaussian(mu = 0, sigma = 1),
name = "Same univariate density for every transition"
)
write_model(exCase13, noLogLike = FALSE, "out")
# Case 14. Same multivariate density for every transition row
# Input: One multivariate density
# Behaviour: Repeat input K times
exCase14 <- hmm(
K = K, R = R,
observation =
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
),
initial = Dirichlet(alpha = c(0.5, 0.5, 0.5)),
transition =
Dirichlet(
alpha = c(0.5, 0.5, 0.7)
),
name = "Same multivariate density for every transition row"
)
write_model(exCase14, noLogLike = FALSE, "out")
# Case 15. A different univariate density for each element of the transition row
# Input: K univariate densities
# Behaviour: Repeat input K times
exCase15 <- hmm(
K = K, R = R,
observation =
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
),
initial = Dirichlet(alpha = c(0.5, 0.5, 0.5)),
transition =
Beta(alpha = 0.1, beta = 0.1) +
Beta(alpha = 0.5, beta = 0.5) +
Beta(alpha = 0.9, beta = 0.9),
name = "A different univariate density for each element of the transition row"
)
write_model(exCase15, noLogLike = FALSE, "out")
# Case 16. A different multivariate density for each transition row
# Input: K multivariate densities
# Behaviour: nothing
exCase16 <- hmm(
K = K, R = R,
observation =
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
),
initial = Dirichlet(alpha = c(0.5, 0.5, 0.5)),
transition =
Dirichlet(alpha = c(0.1, 0.1, 0.1)) +
Dirichlet(alpha = c(0.5, 0.5, 0.5)) +
Dirichlet(alpha = c(0.9, 0.9, 0.9)),
name = "A different multivariate density for each transition row"
)
write_model(exCase16, noLogLike = FALSE, "out")
# Case 17. Different univariate densities for each element of the transition matrix
# Input: KxK univariate densities
# Behaviour: None
exCase17 <- hmm(
K = K, R = R,
observation =
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
),
initial = Dirichlet(alpha = c(0.5, 0.5, 0.5)),
transition =
Beta(alpha = 0.1, beta = 0.1) +
Beta(alpha = 0.2, beta = 0.2) +
Beta(alpha = 0.3, beta = 0.3) +
Beta(alpha = 0.4, beta = 0.4) +
Beta(alpha = 0.5, beta = 0.5) +
Beta(alpha = 0.6, beta = 0.6) +
Beta(alpha = 0.7, beta = 0.7) +
Beta(alpha = 0.8, beta = 0.8) +
Beta(alpha = 0.9, beta = 0.9),
name = "Different univariate densities for each element of the transition matrix"
)
write_model(exCase17, noLogLike = FALSE, "out")
# Case 18. A link
# Input: One link density
# Behaviour: Nothing
exCase18 <- hmm(
K = K, R = R,
observation =
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
),
initial = Dirichlet(alpha = c(0.5, 0.5, 0.5)),
transition =
TransitionSoftmax(
uBeta = Gaussian(mu = 0, sigma = 1)
),
name = "Different univariate densities for each element of the transition matrix"
)
write_model(exCase18, noLogLike = FALSE, "out")
# A FULLY COMPLEX MODEL ---------------------------------------------------
# Case 19. A link in both the transition and initial distribution.
# Input: A link in both the transition and initial distribution.
# Behaviour: Nothing
exCase19 <- hmm(
K = K, R = R,
observation =
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
) +
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
) +
Gaussian(
mu = Gaussian(0, 10),
sigma = Gaussian(0, 10, bounds = list(0, NULL))
),
initial =
InitialSoftmax(
vBeta = Gaussian(mu = 0, sigma = 1)
),
transition =
TransitionSoftmax(
uBeta = Gaussian(mu = 0, sigma = 1)
),
name = "Fully Complex Model"
)
write_model(exCase19, noLogLike = FALSE, "out")