-
Notifications
You must be signed in to change notification settings - Fork 42
/
Keccak-compact.cpp
executable file
·399 lines (330 loc) · 10.4 KB
/
Keccak-compact.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
/*
The Keccak sponge function, designed by Guido Bertoni, Joan Daemen,
Michaël Peeters and Gilles Van Assche. For more information, feedback or
questions, please refer to our website: http://keccak.noekeon.org/
Implementation by Ronny Van Keer,
hereby denoted as "the implementer".
To the extent possible under law, the implementer has waived all copyright
and related or neighboring rights to the source code in this file.
http://creativecommons.org/publicdomain/zero/1.0/
*/
#include <string.h>
#include "Keccak-compact-settings.h"
#include "Keccak-compact.h"
#define cKeccakR_SizeInBytes (cKeccakR / 8)
//#include "crypto_hash.h"
#ifndef crypto_hash_BYTES
#ifdef cKeccakFixedOutputLengthInBytes
#define crypto_hash_BYTES cKeccakFixedOutputLengthInBytes
#else
#define crypto_hash_BYTES cKeccakR_SizeInBytes
#endif
#endif
#if (crypto_hash_BYTES > cKeccakR_SizeInBytes)
#error "Full squeezing not yet implemented"
#endif
#define IS_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */
#define IS_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */
#define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN /* WARNING: This implementation works on little-endian platform. Support for big-endinanness is implemented, but not tested. */
#if (cKeccakB == 1600)
typedef unsigned long long UINT64;
typedef UINT64 tKeccakLane;
#define cKeccakNumberOfRounds 24
#elif (cKeccakB == 800)
typedef unsigned int UINT32;
// WARNING: on 8-bit and 16-bit platforms, this should be replaced by:
//typedef unsigned long UINT32;
typedef UINT32 tKeccakLane;
#define cKeccakNumberOfRounds 22
#elif (cKeccakB == 400)
typedef unsigned short UINT16;
typedef UINT16 tKeccakLane;
#define cKeccakNumberOfRounds 20
#elif (cKeccakB == 200)
typedef unsigned char UINT8;
typedef UINT8 tKeccakLane;
#define cKeccakNumberOfRounds 18
#else
#error "Unsupported Keccak-f width"
#endif
typedef unsigned int tSmallUInt; /*INFO It could be more optimized to use "unsigned char" on an 8-bit CPU */
#define cKeccakLaneSizeInBits (sizeof(tKeccakLane) * 8)
#define ROL(a, offset) (tKeccakLane)((((tKeccakLane)a) << ((offset) % cKeccakLaneSizeInBits)) ^ (((tKeccakLane)a) >> (cKeccakLaneSizeInBits-((offset) % cKeccakLaneSizeInBits))))
void KeccakF( tKeccakLane * state, const tKeccakLane *in, int laneCount );
int crypto_hash_NIST_SHA3(unsigned char *out, const unsigned char *in, unsigned long long inlen)
{
tKeccakLane state[5 * 5];
#if (crypto_hash_BYTES >= cKeccakR_SizeInBytes)
#define temp out
#else
unsigned char temp[cKeccakR_SizeInBytes];
#endif
memset(state, 0, sizeof(state));
for ( /* empty */; inlen >= cKeccakR_SizeInBytes; inlen -= cKeccakR_SizeInBytes, in += cKeccakR_SizeInBytes)
{
KeccakF(state, (const tKeccakLane*)in, cKeccakR_SizeInBytes / sizeof(tKeccakLane));
}
/* Last data and padding */
memcpy(temp, in, (size_t)inlen);
//temp[inlen++] = 1;
temp[inlen++] = 6;
if (inlen < cKeccakR_SizeInBytes)
{
memset(temp + inlen, 0, cKeccakR_SizeInBytes - (size_t)inlen);
}
temp[cKeccakR_SizeInBytes - 1] |= 0x80;
KeccakF(state, (const tKeccakLane*)temp, cKeccakR_SizeInBytes / sizeof(tKeccakLane));
#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN) || (cKeccakB == 200)
memcpy(out, state, crypto_hash_BYTES);
#else
for (i = 0; i < (crypto_hash_BYTES / sizeof(tKeccakLane)); ++i)
{
tSmallUInt j;
tKeccakLane t;
t = state[i];
for (j = 0; j < sizeof(tKeccakLane); ++j)
{
*(out++) = (unsigned char)t;
t >>= 8;
}
}
#endif
#if (crypto_hash_BYTES >= cKeccakR_SizeInBytes)
#undef temp
#endif
return (0);
}
int crypto_hash( unsigned char *out, const unsigned char *in, unsigned long long inlen )
{
tKeccakLane state[5 * 5];
#if (crypto_hash_BYTES >= cKeccakR_SizeInBytes)
#define temp out
#else
unsigned char temp[cKeccakR_SizeInBytes];
#endif
memset( state, 0, sizeof(state) );
for ( /* empty */; inlen >= cKeccakR_SizeInBytes; inlen -= cKeccakR_SizeInBytes, in += cKeccakR_SizeInBytes )
{
KeccakF( state, (const tKeccakLane*)in, cKeccakR_SizeInBytes / sizeof(tKeccakLane) );
}
/* Last data and padding */
memcpy( temp, in, (size_t)inlen );
temp[inlen++] = 1;
if (inlen < cKeccakR_SizeInBytes)
{
memset( temp+inlen, 0, cKeccakR_SizeInBytes - (size_t)inlen );
}
temp[cKeccakR_SizeInBytes-1] |= 0x80;
KeccakF( state, (const tKeccakLane*)temp, cKeccakR_SizeInBytes / sizeof(tKeccakLane) );
#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN) || (cKeccakB == 200)
memcpy( out, state, crypto_hash_BYTES );
#else
for ( i = 0; i < (crypto_hash_BYTES / sizeof(tKeccakLane)); ++i )
{
tSmallUInt j;
tKeccakLane t;
t = state[i];
for ( j = 0; j < sizeof(tKeccakLane); ++j )
{
*(out++) = (unsigned char)t;
t >>= 8;
}
}
#endif
#if (crypto_hash_BYTES >= cKeccakR_SizeInBytes)
#undef temp
#endif
return ( 0 );
}
const tKeccakLane KeccakF_RoundConstants[cKeccakNumberOfRounds] =
{
(tKeccakLane)0x0000000000000001ULL,
(tKeccakLane)0x0000000000008082ULL,
(tKeccakLane)0x800000000000808aULL,
(tKeccakLane)0x8000000080008000ULL,
(tKeccakLane)0x000000000000808bULL,
(tKeccakLane)0x0000000080000001ULL,
(tKeccakLane)0x8000000080008081ULL,
(tKeccakLane)0x8000000000008009ULL,
(tKeccakLane)0x000000000000008aULL,
(tKeccakLane)0x0000000000000088ULL,
(tKeccakLane)0x0000000080008009ULL,
(tKeccakLane)0x000000008000000aULL,
(tKeccakLane)0x000000008000808bULL,
(tKeccakLane)0x800000000000008bULL,
(tKeccakLane)0x8000000000008089ULL,
(tKeccakLane)0x8000000000008003ULL,
(tKeccakLane)0x8000000000008002ULL,
(tKeccakLane)0x8000000000000080ULL
#if (cKeccakB >= 400)
, (tKeccakLane)0x000000000000800aULL,
(tKeccakLane)0x800000008000000aULL
#if (cKeccakB >= 800)
, (tKeccakLane)0x8000000080008081ULL,
(tKeccakLane)0x8000000000008080ULL
#if (cKeccakB == 1600)
, (tKeccakLane)0x0000000080000001ULL,
(tKeccakLane)0x8000000080008008ULL
#endif
#endif
#endif
};
const tSmallUInt KeccakF_RotationConstants[25] =
{
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14, 27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44
};
const tSmallUInt KeccakF_PiLane[25] =
{
10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4, 15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1
};
const tSmallUInt KeccakF_Mod5[10] =
{
0, 1, 2, 3, 4, 0, 1, 2, 3, 4
};
void KeccakF( tKeccakLane * state, const tKeccakLane *in, int laneCount )
{
tSmallUInt x, y;
tKeccakLane temp;
tKeccakLane BC[5];
#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN) || (cKeccakB == 200)
while ( --laneCount >= 0 )
{
state[laneCount] ^= in[laneCount];
}
#else
temp = 0; /* please compiler */
while ( --laneCount >= 0 )
{
for ( x = 0; x < sizeof(tKeccakLane); ++x )
{
temp <<= 8;
temp |= ((char*)&in[laneCount])[x];
}
state[laneCount] = temp;
}
#endif
#define round laneCount
for( round = 0; round < cKeccakNumberOfRounds; ++round )
{
// Theta
for ( x = 0; x < 5; ++x )
{
BC[x] = state[x] ^ state[5 + x] ^ state[10 + x] ^ state[15 + x] ^ state[20 + x];
}
for ( x = 0; x < 5; ++x )
{
temp = BC[KeccakF_Mod5[x+4]] ^ ROL(BC[KeccakF_Mod5[x+1]], 1);
for ( y = 0; y < 25; y += 5 )
{
state[y + x] ^= temp;
}
}
// Rho Pi
temp = state[1];
for ( x = 0; x < 24; ++x )
{
BC[0] = state[KeccakF_PiLane[x]];
state[KeccakF_PiLane[x]] = ROL( temp, KeccakF_RotationConstants[x] );
temp = BC[0];
}
// Chi
for ( y = 0; y < 25; y += 5 )
{
BC[0] = state[y + 0];
BC[1] = state[y + 1];
BC[2] = state[y + 2];
BC[3] = state[y + 3];
BC[4] = state[y + 4];
for ( x = 0; x < 5; ++x )
{
state[y + x] = BC[x] ^((~BC[KeccakF_Mod5[x+1]]) & BC[KeccakF_Mod5[x+2]]);
}
}
// Iota
state[0] ^= KeccakF_RoundConstants[round];
}
#undef round
}
HashReturn Init(hashState *state)
{
state->bitsInQueue = 0;
memset( state->state, 0, sizeof(state->state) );
return ( SUCCESS );
}
HashReturn Update(hashState *state, const BitSequence *data, DataLength databitlen)
{
if ( (state->bitsInQueue < 0) || ((state->bitsInQueue % 8) != 0) )
{
/* Final() already called or bits already in queue not modulo 8. */
return ( FAIL );
}
/* If already data in queue, continue queuing first */
for ( /* empty */; (databitlen >= 8) && (state->bitsInQueue != 0); databitlen -= 8 )
{
state->state[state->bitsInQueue / 8] ^= *(data++);
if ( (state->bitsInQueue += 8) == cKeccakR )
{
KeccakF( (tKeccakLane *)state->state, 0, 0 );
state->bitsInQueue = 0;
}
}
/* Absorb complete blocks */
for ( /* */; databitlen >= cKeccakR; databitlen -= cKeccakR, data += cKeccakR_SizeInBytes )
{
KeccakF( (tKeccakLane *)state->state, (const tKeccakLane *)data, cKeccakR_SizeInBytes / sizeof(tKeccakLane) );
}
/* Queue remaining data bytes */
for ( /* empty */; databitlen >=8; databitlen -= 8, state->bitsInQueue += 8 )
{
state->state[state->bitsInQueue / 8] ^= *(data++);
}
/* Queue eventual remaining data bits plus add first padding bit */
if ( databitlen != 0 )
{
state->state[state->bitsInQueue / 8] ^= (*data >> (8 - databitlen));
state->bitsInQueue += (int)databitlen;
}
return ( SUCCESS );
}
HashReturn Final(hashState *state, BitSequence *hashval, tSmallUInt hashbytelen)
{
tSmallUInt i;
if ( state->bitsInQueue < 0 )
{
/* Final() already called. */
return ( FAIL );
}
// Padding
if (state->bitsInQueue + 1 == cKeccakR_SizeInBytes*8) {
state->state[cKeccakR_SizeInBytes-1] ^= 0x80;
KeccakF( (tKeccakLane *)state->state, 0, 0 );
}
else {
state->state[state->bitsInQueue/8] ^= 1 << (state->bitsInQueue % 8);
}
state->state[cKeccakR_SizeInBytes-1] ^= 0x80;
KeccakF( (tKeccakLane *)state->state, 0, 0 );
// Output
for ( /* empty */; hashbytelen != 0; hashval += i, hashbytelen -= i )
{
i = (hashbytelen < cKeccakR_SizeInBytes) ? hashbytelen : cKeccakR_SizeInBytes;
#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN) || (cKeccakB == 200)
memcpy( hashval, state->state, i );
#else
for ( offset = 0; offset < i; offset += sizeof(tKeccakLane) )
{
tSmallUInt j;
for ( j = 0; j < sizeof(tKeccakLane); ++j )
{
hashval[offset + j] = state->state[offset + (sizeof(tKeccakLane) - 1) - j];
}
}
#endif
if ( i != hashbytelen )
{
KeccakF( (tKeccakLane *)state->state, 0, 0 );
}
}
state->bitsInQueue = -1; /* flag final state */
return ( SUCCESS );
}