forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsast_postprocess.py
executable file
·355 lines (311 loc) · 13.3 KB
/
sast_postprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '..'))
import numpy as np
from .locality_aware_nms import nms_locality
import paddle
import cv2
import time
class SASTPostProcess(object):
"""
The post process for SAST.
"""
def __init__(self,
score_thresh=0.5,
nms_thresh=0.2,
sample_pts_num=2,
shrink_ratio_of_width=0.3,
expand_scale=1.0,
tcl_map_thresh=0.5,
**kwargs):
self.score_thresh = score_thresh
self.nms_thresh = nms_thresh
self.sample_pts_num = sample_pts_num
self.shrink_ratio_of_width = shrink_ratio_of_width
self.expand_scale = expand_scale
self.tcl_map_thresh = tcl_map_thresh
# c++ la-nms is faster, but only support python 3.5
self.is_python35 = False
if sys.version_info.major == 3 and sys.version_info.minor == 5:
self.is_python35 = True
def point_pair2poly(self, point_pair_list):
"""
Transfer vertical point_pairs into poly point in clockwise.
"""
# constract poly
point_num = len(point_pair_list) * 2
point_list = [0] * point_num
for idx, point_pair in enumerate(point_pair_list):
point_list[idx] = point_pair[0]
point_list[point_num - 1 - idx] = point_pair[1]
return np.array(point_list).reshape(-1, 2)
def shrink_quad_along_width(self,
quad,
begin_width_ratio=0.,
end_width_ratio=1.):
"""
Generate shrink_quad_along_width.
"""
ratio_pair = np.array(
[[begin_width_ratio], [end_width_ratio]], dtype=np.float32)
p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair
p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair
return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]])
def expand_poly_along_width(self, poly, shrink_ratio_of_width=0.3):
"""
expand poly along width.
"""
point_num = poly.shape[0]
left_quad = np.array(
[poly[0], poly[1], poly[-2], poly[-1]], dtype=np.float32)
left_ratio = -shrink_ratio_of_width * np.linalg.norm(left_quad[0] - left_quad[3]) / \
(np.linalg.norm(left_quad[0] - left_quad[1]) + 1e-6)
left_quad_expand = self.shrink_quad_along_width(left_quad, left_ratio,
1.0)
right_quad = np.array(
[
poly[point_num // 2 - 2], poly[point_num // 2 - 1],
poly[point_num // 2], poly[point_num // 2 + 1]
],
dtype=np.float32)
right_ratio = 1.0 + \
shrink_ratio_of_width * np.linalg.norm(right_quad[0] - right_quad[3]) / \
(np.linalg.norm(right_quad[0] - right_quad[1]) + 1e-6)
right_quad_expand = self.shrink_quad_along_width(right_quad, 0.0,
right_ratio)
poly[0] = left_quad_expand[0]
poly[-1] = left_quad_expand[-1]
poly[point_num // 2 - 1] = right_quad_expand[1]
poly[point_num // 2] = right_quad_expand[2]
return poly
def restore_quad(self, tcl_map, tcl_map_thresh, tvo_map):
"""Restore quad."""
xy_text = np.argwhere(tcl_map[:, :, 0] > tcl_map_thresh)
xy_text = xy_text[:, ::-1] # (n, 2)
# Sort the text boxes via the y axis
xy_text = xy_text[np.argsort(xy_text[:, 1])]
scores = tcl_map[xy_text[:, 1], xy_text[:, 0], 0]
scores = scores[:, np.newaxis]
# Restore
point_num = int(tvo_map.shape[-1] / 2)
assert point_num == 4
tvo_map = tvo_map[xy_text[:, 1], xy_text[:, 0], :]
xy_text_tile = np.tile(xy_text, (1, point_num)) # (n, point_num * 2)
quads = xy_text_tile - tvo_map
return scores, quads, xy_text
def quad_area(self, quad):
"""
compute area of a quad.
"""
edge = [(quad[1][0] - quad[0][0]) * (quad[1][1] + quad[0][1]),
(quad[2][0] - quad[1][0]) * (quad[2][1] + quad[1][1]),
(quad[3][0] - quad[2][0]) * (quad[3][1] + quad[2][1]),
(quad[0][0] - quad[3][0]) * (quad[0][1] + quad[3][1])]
return np.sum(edge) / 2.
def nms(self, dets):
if self.is_python35:
import lanms
dets = lanms.merge_quadrangle_n9(dets, self.nms_thresh)
else:
dets = nms_locality(dets, self.nms_thresh)
return dets
def cluster_by_quads_tco(self, tcl_map, tcl_map_thresh, quads, tco_map):
"""
Cluster pixels in tcl_map based on quads.
"""
instance_count = quads.shape[0] + 1 # contain background
instance_label_map = np.zeros(tcl_map.shape[:2], dtype=np.int32)
if instance_count == 1:
return instance_count, instance_label_map
# predict text center
xy_text = np.argwhere(tcl_map[:, :, 0] > tcl_map_thresh)
n = xy_text.shape[0]
xy_text = xy_text[:, ::-1] # (n, 2)
tco = tco_map[xy_text[:, 1], xy_text[:, 0], :] # (n, 2)
pred_tc = xy_text - tco
# get gt text center
m = quads.shape[0]
gt_tc = np.mean(quads, axis=1) # (m, 2)
pred_tc_tile = np.tile(pred_tc[:, np.newaxis, :],
(1, m, 1)) # (n, m, 2)
gt_tc_tile = np.tile(gt_tc[np.newaxis, :, :], (n, 1, 1)) # (n, m, 2)
dist_mat = np.linalg.norm(pred_tc_tile - gt_tc_tile, axis=2) # (n, m)
xy_text_assign = np.argmin(dist_mat, axis=1) + 1 # (n,)
instance_label_map[xy_text[:, 1], xy_text[:, 0]] = xy_text_assign
return instance_count, instance_label_map
def estimate_sample_pts_num(self, quad, xy_text):
"""
Estimate sample points number.
"""
eh = (np.linalg.norm(quad[0] - quad[3]) +
np.linalg.norm(quad[1] - quad[2])) / 2.0
ew = (np.linalg.norm(quad[0] - quad[1]) +
np.linalg.norm(quad[2] - quad[3])) / 2.0
dense_sample_pts_num = max(2, int(ew))
dense_xy_center_line = xy_text[np.linspace(
0,
xy_text.shape[0] - 1,
dense_sample_pts_num,
endpoint=True,
dtype=np.float32).astype(np.int32)]
dense_xy_center_line_diff = dense_xy_center_line[
1:] - dense_xy_center_line[:-1]
estimate_arc_len = np.sum(
np.linalg.norm(
dense_xy_center_line_diff, axis=1))
sample_pts_num = max(2, int(estimate_arc_len / eh))
return sample_pts_num
def detect_sast(self,
tcl_map,
tvo_map,
tbo_map,
tco_map,
ratio_w,
ratio_h,
src_w,
src_h,
shrink_ratio_of_width=0.3,
tcl_map_thresh=0.5,
offset_expand=1.0,
out_strid=4.0):
"""
first resize the tcl_map, tvo_map and tbo_map to the input_size, then restore the polys
"""
# restore quad
scores, quads, xy_text = self.restore_quad(tcl_map, tcl_map_thresh,
tvo_map)
dets = np.hstack((quads, scores)).astype(np.float32, copy=False)
dets = self.nms(dets)
if dets.shape[0] == 0:
return []
quads = dets[:, :-1].reshape(-1, 4, 2)
# Compute quad area
quad_areas = []
for quad in quads:
quad_areas.append(-self.quad_area(quad))
# instance segmentation
# instance_count, instance_label_map = cv2.connectedComponents(tcl_map.astype(np.uint8), connectivity=8)
instance_count, instance_label_map = self.cluster_by_quads_tco(
tcl_map, tcl_map_thresh, quads, tco_map)
# restore single poly with tcl instance.
poly_list = []
for instance_idx in range(1, instance_count):
xy_text = np.argwhere(instance_label_map == instance_idx)[:, ::-1]
quad = quads[instance_idx - 1]
q_area = quad_areas[instance_idx - 1]
if q_area < 5:
continue
#
len1 = float(np.linalg.norm(quad[0] - quad[1]))
len2 = float(np.linalg.norm(quad[1] - quad[2]))
min_len = min(len1, len2)
if min_len < 3:
continue
# filter small CC
if xy_text.shape[0] <= 0:
continue
# filter low confidence instance
xy_text_scores = tcl_map[xy_text[:, 1], xy_text[:, 0], 0]
if np.sum(xy_text_scores) / quad_areas[instance_idx - 1] < 0.1:
# if np.sum(xy_text_scores) / quad_areas[instance_idx - 1] < 0.05:
continue
# sort xy_text
left_center_pt = np.array(
[[(quad[0, 0] + quad[-1, 0]) / 2.0,
(quad[0, 1] + quad[-1, 1]) / 2.0]]) # (1, 2)
right_center_pt = np.array(
[[(quad[1, 0] + quad[2, 0]) / 2.0,
(quad[1, 1] + quad[2, 1]) / 2.0]]) # (1, 2)
proj_unit_vec = (right_center_pt - left_center_pt) / \
(np.linalg.norm(right_center_pt - left_center_pt) + 1e-6)
proj_value = np.sum(xy_text * proj_unit_vec, axis=1)
xy_text = xy_text[np.argsort(proj_value)]
# Sample pts in tcl map
if self.sample_pts_num == 0:
sample_pts_num = self.estimate_sample_pts_num(quad, xy_text)
else:
sample_pts_num = self.sample_pts_num
xy_center_line = xy_text[np.linspace(
0,
xy_text.shape[0] - 1,
sample_pts_num,
endpoint=True,
dtype=np.float32).astype(np.int32)]
point_pair_list = []
for x, y in xy_center_line:
# get corresponding offset
offset = tbo_map[y, x, :].reshape(2, 2)
if offset_expand != 1.0:
offset_length = np.linalg.norm(
offset, axis=1, keepdims=True)
expand_length = np.clip(
offset_length * (offset_expand - 1),
a_min=0.5,
a_max=3.0)
offset_detal = offset / offset_length * expand_length
offset = offset + offset_detal
# original point
ori_yx = np.array([y, x], dtype=np.float32)
point_pair = (ori_yx + offset)[:, ::-1] * out_strid / np.array(
[ratio_w, ratio_h]).reshape(-1, 2)
point_pair_list.append(point_pair)
# ndarry: (x, 2), expand poly along width
detected_poly = self.point_pair2poly(point_pair_list)
detected_poly = self.expand_poly_along_width(detected_poly,
shrink_ratio_of_width)
detected_poly[:, 0] = np.clip(
detected_poly[:, 0], a_min=0, a_max=src_w)
detected_poly[:, 1] = np.clip(
detected_poly[:, 1], a_min=0, a_max=src_h)
poly_list.append(detected_poly)
return poly_list
def __call__(self, outs_dict, shape_list):
score_list = outs_dict['f_score']
border_list = outs_dict['f_border']
tvo_list = outs_dict['f_tvo']
tco_list = outs_dict['f_tco']
if isinstance(score_list, paddle.Tensor):
score_list = score_list.numpy()
border_list = border_list.numpy()
tvo_list = tvo_list.numpy()
tco_list = tco_list.numpy()
img_num = len(shape_list)
poly_lists = []
for ino in range(img_num):
p_score = score_list[ino].transpose((1, 2, 0))
p_border = border_list[ino].transpose((1, 2, 0))
p_tvo = tvo_list[ino].transpose((1, 2, 0))
p_tco = tco_list[ino].transpose((1, 2, 0))
src_h, src_w, ratio_h, ratio_w = shape_list[ino]
poly_list = self.detect_sast(
p_score,
p_tvo,
p_border,
p_tco,
ratio_w,
ratio_h,
src_w,
src_h,
shrink_ratio_of_width=self.shrink_ratio_of_width,
tcl_map_thresh=self.tcl_map_thresh,
offset_expand=self.expand_scale)
poly_lists.append({'points': np.array(poly_list)})
return poly_lists