-
Notifications
You must be signed in to change notification settings - Fork 0
/
modeling.py
2021 lines (1638 loc) · 96.5 KB
/
modeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""
from __future__ import absolute_import, division, print_function, unicode_literals
import copy
import json
import logging
import math
import os
import shutil
import tarfile
import tempfile
import sys
from io import open
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from file_utils import cached_path
import torchvision.utils as vutils
from transformer_memory import SparseMemory
logger = logging.getLogger(__name__)
PRETRAINED_MODEL_ARCHIVE_MAP = {
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz",
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz",
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz",
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz",
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz",
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz",
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz",
}
CONFIG_NAME = 'bert_config.json'
WEIGHTS_NAME = 'pytorch_model.bin'
TF_WEIGHTS_NAME = 'model.ckpt'
# def index_to_batch(index):
# indext = torch.t(index)
# return indext[1].clone().unsqueeze(0).view(indext[0].max()+1,-1)
def load_tf_weights_in_bert(model, tf_checkpoint_path):
""" Load tf checkpoints in a pytorch model
"""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
tf_path = os.path.abspath(tf_checkpoint_path)
print("Converting TensorFlow checkpoint from {}".format(tf_path))
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
print("Loading TF weight {} with shape {}".format(name, shape))
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array)
for name, array in zip(names, arrays):
name = name.split('/')
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(n in ["adam_v", "adam_m"] for n in name):
print("Skipping {}".format("/".join(name)))
continue
pointer = model
for m_name in name:
if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
l = re.split(r'_(\d+)', m_name)
else:
l = [m_name]
if l[0] == 'kernel' or l[0] == 'gamma':
pointer = getattr(pointer, 'weight')
elif l[0] == 'output_bias' or l[0] == 'beta':
pointer = getattr(pointer, 'bias')
elif l[0] == 'output_weights':
pointer = getattr(pointer, 'weight')
else:
pointer = getattr(pointer, l[0])
if len(l) >= 2:
num = int(l[1])
pointer = pointer[num]
if m_name[-11:] == '_embeddings':
pointer = getattr(pointer, 'weight')
elif m_name == 'kernel':
array = np.transpose(array)
try:
assert pointer.shape == array.shape
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
print("Initialize PyTorch weight {}".format(name))
pointer.data = torch.from_numpy(array)
return model
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
def swish(x):
return x * torch.sigmoid(x)
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}
class BertConfig(object):
"""Configuration class to store the configuration of a `BertModel`.
"""
def __init__(self,
vocab_size_or_config_json_file,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
use_mask_embeddings=True,
use_temporal_embeddings=True,
mask_token_number = 103,
max_comp_length =256,
sum_type = "sum",
memory_size = 512,
direct_write=False,
read_gate=True,
read_token_type="concat",
calc_with_read=True,
use_ut=True):
"""Constructs BertConfig.
Args:
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
hidden_size: Size of the encoder layers and the pooler layer.
num_hidden_layers: Number of hidden layers in the Transformer encoder.
num_attention_heads: Number of attention heads for each attention layer in
the Transformer encoder.
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
layer in the Transformer encoder.
hidden_act: The non-linear activation function (function or string) in the
encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
hidden_dropout_prob: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob: The dropout ratio for the attention
probabilities.
max_position_embeddings: The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048).
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
`BertModel`.
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
"""
if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
and isinstance(vocab_size_or_config_json_file, unicode)):
with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
json_config = json.loads(reader.read())
for key, value in json_config.items():
self.__dict__[key] = value
elif isinstance(vocab_size_or_config_json_file, int):
self.vocab_size = vocab_size_or_config_json_file
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.use_mask_embeddings= use_mask_embeddings
self.use_temporal_embeddings= use_temporal_embeddings
self.mask_token_number = mask_token_number
self.max_comp_length = max_comp_length
self.sum_type = sum_type
self.memory_size = memory_size
self.direct_write = direct_write
self.read_gate = read_gate
self.read_token_type = read_token_type
self.calc_with_read = calc_with_read
self.use_ut = use_ut
else:
raise ValueError("First argument must be either a vocabulary size (int)"
"or the path to a pretrained model config file (str)")
@classmethod
def from_dict(cls, json_object):
"""Constructs a `BertConfig` from a Python dictionary of parameters."""
config = BertConfig(vocab_size_or_config_json_file=-1)
for key, value in json_object.items():
config.__dict__[key] = value
return config
@classmethod
def from_json_file(cls, json_file):
"""Constructs a `BertConfig` from a json file of parameters."""
with open(json_file, "r", encoding='utf-8') as reader:
text = reader.read()
return cls.from_dict(json.loads(text))
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
# try:
# from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
# except ImportError:
# print("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex.")
class BertLayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12):
"""Construct a layernorm module in the TF style (epsilon inside the square root).
"""
super(BertLayerNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x + self.bias
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings.
"""
def __init__(self, config):
super(BertEmbeddings, self).__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids, token_type_ids=None):
seq_length = input_ids.size(1)
# creates one number for each position and duplicates this vector along the batch axis
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
words_embeddings = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = words_embeddings + position_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class BertSelfAttention(nn.Module):
def __init__(self, config):
super(BertSelfAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
class BertSelfOutput(nn.Module):
def __init__(self, config):
super(BertSelfOutput, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertSelfOutputDNC(nn.Module):
def __init__(self, config):
super(BertSelfOutputDNC, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertAttention(nn.Module):
def __init__(self, config):
super(BertAttention, self).__init__()
self.self = BertSelfAttention(config)
self.output = BertSelfOutput(config)
def forward(self, input_tensor, attention_mask):
self_output = self.self(input_tensor, attention_mask)
attention_output = self.output(self_output, input_tensor)
return attention_output
class BertAttentionUt(nn.Module):
def __init__(self, config):
super(BertAttentionUt, self).__init__()
self.temporal_embedding = nn.Embedding(max(config.num_hidden_layers, 10), config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.self = BertSelfAttention(config)
self.output = BertSelfOutput(config)
def forward(self, input_tensor, attention_mask, ut_time):
temp_tensor = torch.tensor([ut_time], dtype=torch.long, device=input_tensor.device)
temp_out = self.temporal_embedding(temp_tensor)
temp_out = self.dropout(temp_out)
temp_out = temp_out.expand_as(input_tensor)
self_output = self.self(input_tensor + temp_out , attention_mask)
attention_output = self.output(self_output, input_tensor)
return attention_output
class BertAttentionDNC(nn.Module):
def __init__(self, config):
super(BertAttentionDNC, self).__init__()
self.temporal_embedding = nn.Embedding(max(config.num_hidden_layers, 10), config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.self = BertSelfAttention(config)
self.output = BertSelfOutputDNC(config)
self.read_embedding = nn.Embedding(2, config.hidden_size)
self.dropout2 = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_tensor, attention_mask, ut_time, reads_pos):
temp_tensor = torch.tensor([ut_time], dtype=torch.long, device=input_tensor.device)
temp_out = self.temporal_embedding(temp_tensor)
temp_out = self.dropout(temp_out)
temp_out = temp_out.expand_as(input_tensor)
read_embedding_output = self.dropout2(self.read_embedding(reads_pos))
self_output = self.self(input_tensor + temp_out + read_embedding_output , attention_mask)
attention_output = self.output(self_output, input_tensor)
return attention_output
class BertIntermediate(nn.Module):
def __init__(self, config):
super(BertIntermediate, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BertOutput(nn.Module):
def __init__(self, config):
super(BertOutput, self).__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertOutputDNC(nn.Module):
def __init__(self, config):
super(BertOutputDNC, self).__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states) + input_tensor
return hidden_states
class BertLayer(nn.Module):
def __init__(self, config):
super(BertLayer, self).__init__()
self.attention = BertAttention(config)
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
def forward(self, hidden_states, attention_mask):
attention_output = self.attention(hidden_states, attention_mask)
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class BertLayerUt(nn.Module):
def __init__(self, config):
super(BertLayerUt, self).__init__()
self.attention = BertAttentionUt(config)
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
def forward(self, hidden_states, attention_mask, ut_time):
attention_output = self.attention(hidden_states, attention_mask, ut_time)
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class BertLayerDNC(nn.Module):
def __init__(self, config):
super(BertLayerDNC, self).__init__()
self.gpu_id = 0
self.memory = SparseMemory(input_size= config.hidden_size, mem_size=config.memory_size, cell_size=config.hidden_size,
independent_linears=False, read_heads=1, sparse_reads=4, num_lists=None, index_checks=None,
gpu_id=self.gpu_id, mem_gpu_id=self.gpu_id, direct_write=config.direct_write,
read_gate=config.read_gate, calc_with_read = config.calc_with_read, dropout = config.hidden_dropout_prob)
self.attention = BertAttentionDNC(config)
self.intermediate = BertIntermediate(config)
self.output = BertOutputDNC(config)
self.max_comp_length = config.max_comp_length
self.memory_hidden = None
self.sum_type = config.sum_type
self.tensorboard = False
self.outer_steps = 0
self.inter_results = 0
self.mem_save = False
self.usage_save = False
self.num_hidden_layers = config.num_hidden_layers
self.norm_before = False
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
def forward(self, hidden_states, attention_mask, ut_time, input_number, total_tokens, mask_positions, reset_memory, erase_memory):
#import pdb; pdb.set_trace()
batch_size , token_number, _ = hidden_states.size()
if reset_memory:
self.memory_hidden = self.memory.reset(batch_size, token_number, self.memory_hidden, erase= erase_memory)
# use sam to read and write tokens, input mask to show dnc which positions should not read and write
read_tokens, self.memory_hidden, interpolation_gate, write_gate, read_gate = self.memory(hidden_states, self.memory_hidden, attention_mask = attention_mask)
# concat tokens
hidden_states = torch.cat([hidden_states, read_tokens], dim=1)
# modify attention mask to include newly read tokens
reads_pos = torch.cat([torch.ones_like(attention_mask, dtype=torch.long),torch.zeros_like(attention_mask, dtype=torch.long)],dim=1)
attention_mask = torch.cat([attention_mask, attention_mask], dim=1)
# add read token embedding to all newly read tokens
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype)
attention_output = self.attention(hidden_states, extended_attention_mask, ut_time, reads_pos) #attention mask needs to be updated
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
# pool tokens, excluding mask tokens (we need the mask token positions here)
# get indices for all mask tokens in i = [3, 8, 9]
#mask_index = (mask_positions != 0).nonzero()
# either sum or abs sum the tokens on the last dim
if self.sum_type == "sum":
summed = torch.sum(layer_output, dim=2)
if self.sum_type == "abs_sum":
summed = torch.sum(torch.abs(layer_output), dim=2)
# index the sum tensor with 1-mask_positions to get the tensor without the mask positions#
# or better: scatter -10000 in all mask positions using i and the sum
mask_positions_full = torch.cat([mask_positions.long(), torch.zeros_like(mask_positions,dtype=torch.long)], dim=1)
negative_mask = (mask_positions_full + 1.0 - attention_mask) * -10000.0
summed = summed + negative_mask.float()
# mask_and_padd = torch.cat([mask_index, att_index], dim=1)
# summed_wo_masks = summed.scatter_(1, mask_index, -10000.0)
# now use topk positions, and turn into python number list
_, top = torch.topk(summed,k=total_tokens, dim=1, sorted=True)
if self.norm_before: layer_output = self.LayerNorm(layer_output)
# concat i with topk list with new created filllist function
new_indices = fill_list(top, mask_positions)
index_tensor = torch.tensor(new_indices, dtype=torch.long, device=top.device)
index_tensor_big = index_tensor.unsqueeze(2).expand(index_tensor.size(0),index_tensor.size(1),layer_output.size(2))
# gather from layer_output with i_topk
#layer_output_p = layer_output[index_tensor]
layer_output_p = torch.gather(layer_output, dim=1, index=index_tensor_big)
if not self.norm_before: layer_output_p = self.LayerNorm(layer_output_p)
# also gather from attention mask with i_topk
gathered_mask = torch.gather(attention_mask, dim=1, index=index_tensor)
# put
if self.tensorboard:
if self.outer_steps % self.inter_results == 0:
for elementname, element in self.memory_hidden.items():
if elementname == "indexes":
pass
elif elementname == "memory":
pass
# mem_img = element.clone().abs().sum(2).view(element.size(0),1,1,element.size(1))
# #grid = vutils.make_grid(mem_img, normalize=True, scale_each=False)
# #self.tensorboard.add_image(str(self.outer_steps)+"memory"+str(ut_time), grid, ut_time)
# if self.mem_save is False:
# self.mem_save = mem_img
# else:
# self.mem_save = torch.cat((self.mem_save, mem_img),2)
# if ut_time == self.num_hidden_layers -1:
# grid = vutils.make_grid(self.mem_save, normalize=True, scale_each=False)
# self.tensorboard.add_image(str(self.outer_steps)+"memory", grid, self.outer_steps)
# self.mem_save = False
elif elementname == "usage":
us_img = element.clone()
usgrid = vutils.make_grid(us_img, normalize=True, scale_each=False)
self.tensorboard.add_image(str(self.outer_steps)+"usage"+str(ut_time), usgrid, ut_time)
else:
self.tensorboard.add_histogram(str(self.outer_steps)+elementname, element.clone().cpu().data.numpy(), ut_time)
self.tensorboard.add_histogram(str(self.outer_steps)+"read_tokens", read_tokens[0].clone().abs().sum(1).cpu().data.numpy(), ut_time)
self.tensorboard.add_histogram(str(self.outer_steps)+"interpolation_gate", interpolation_gate[0].clone().cpu().data.numpy(), ut_time)
self.tensorboard.add_histogram(str(self.outer_steps)+"write_gate", write_gate[0].clone().cpu().data.numpy(), ut_time)
self.tensorboard.add_histogram(str(self.outer_steps)+"read_gate", read_gate[0].clone().cpu().data.numpy(), ut_time)
return layer_output_p, gathered_mask
class BertLayerAddDNC(nn.Module):
def __init__(self, config, scale_original_tokens = True):
super(BertLayerAddDNC, self).__init__()
self.gpu_id = 0
self.memory = SparseMemory(input_size= config.hidden_size, mem_size=config.memory_size, cell_size=config.hidden_size,
independent_linears=False, read_heads=1, sparse_reads=4, num_lists=None, index_checks=None,
gpu_id=self.gpu_id, mem_gpu_id=self.gpu_id, direct_write=config.direct_write, read_gate=config.read_gate)
self.attention = BertAttentionUt(config)
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
self.max_comp_length = config.max_comp_length
self.memory_hidden = None
self.sum_type = config.sum_type
self.tensorboard = False
self.outer_steps = 0
self.inter_results = 0
self.mem_save = False
self.usage_save = False
self.num_hidden_layers = config.num_hidden_layers
self.scale_original_tokens = scale_original_tokens
if self.scale_original_tokens:
self.hidden_gate = nn.Linear(config.hidden_size, 1)
def forward(self, hidden_states, attention_mask, ut_time, input_number, total_tokens, mask_positions, reset_memory, erase_memory):
#import pdb; pdb.set_trace()
batch_size , token_number, units = hidden_states.size()
if reset_memory:
self.memory_hidden = self.memory.reset(batch_size, token_number, self.memory_hidden, erase= erase_memory)
# use sam to read and write tokens, input mask to show dnc which positions should not read and write
read_tokens, self.memory_hidden, interpolation_gate, write_gate, read_gate = self.memory(hidden_states, self.memory_hidden, attention_mask = attention_mask)
if self.scale_original_tokens:
hidden_states = self.hidden_gate(hidden_states).expand(batch_size, token_number, units) * hidden_states
# add tokens
hidden_states = hidden_states + read_tokens
# modify attention mask to include newly read tokens
# reads_pos = torch.cat([torch.ones_like(attention_mask, dtype=torch.long),torch.zeros_like(attention_mask, dtype=torch.long)],dim=1)
#attention_mask = torch.cat([attention_mask, attention_mask], dim=1)
# add read token embedding to all newly read tokens
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype)
attention_output = self.attention(hidden_states, extended_attention_mask, ut_time) #attention mask needs to be updated
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
# put
if self.tensorboard:
if self.outer_steps % self.inter_results == 0:
for elementname, element in self.memory_hidden.items():
if elementname == "indexes":
pass
elif elementname == "memory":
pass
# mem_img = element.clone().abs().sum(2).view(element.size(0),1,1,element.size(1))
# #grid = vutils.make_grid(mem_img, normalize=True, scale_each=False)
# #self.tensorboard.add_image(str(self.outer_steps)+"memory"+str(ut_time), grid, ut_time)
# if self.mem_save is False:
# self.mem_save = mem_img
# else:
# self.mem_save = torch.cat((self.mem_save, mem_img),2)
# if ut_time == self.num_hidden_layers -1:
# grid = vutils.make_grid(self.mem_save, normalize=True, scale_each=False)
# self.tensorboard.add_image(str(self.outer_steps)+"memory", grid, self.outer_steps)
# self.mem_save = False
elif elementname == "usage":
us_img = element.clone()
usgrid = vutils.make_grid(us_img, normalize=True, scale_each=False)
self.tensorboard.add_image(str(self.outer_steps)+"usage"+str(ut_time), usgrid, ut_time)
else:
self.tensorboard.add_histogram(str(self.outer_steps)+elementname, element.clone().cpu().data.numpy(), ut_time)
self.tensorboard.add_histogram(str(self.outer_steps)+"read_tokens", read_tokens[0].clone().abs().sum(1).cpu().data.numpy(), ut_time)
self.tensorboard.add_histogram(str(self.outer_steps)+"interpolation_gate", interpolation_gate[0].clone().cpu().data.numpy(), ut_time)
self.tensorboard.add_histogram(str(self.outer_steps)+"write_gate", write_gate[0].clone().cpu().data.numpy(), ut_time)
self.tensorboard.add_histogram(str(self.outer_steps)+"read_gate", read_gate[0].clone().cpu().data.numpy(), ut_time)
return layer_output, attention_mask
def fill_list(top, mask_positions):
# keeps mask indices original and fills the rest of the position with topk indices
b,n = mask_positions.size()
mask_pos = mask_positions.clone().tolist()
toplist = top.clone().tolist()
final_list = []
for batch in range(b):
tp = iter(toplist[batch])
curr_batch_list = []
for i, mask in enumerate(mask_pos[batch]):
if mask:
curr_batch_list.append(i)
else:
curr_batch_list.append(next(tp))
final_list.append(curr_batch_list)
return final_list
# def fill_list_1d(top, mask_positions):
# # keeps mask indices original and fills the rest of the position with topk indices
# b,n = mask_positions.size()
# mask_pos = mask_positions.clone().tolist()
# toplist = top.clone().tolist()
# final_list = []
# for batch in range(b):
# tp = iter(toplist[batch])
# for i, mask in enumerate(mask_pos[batch]):
# if mask:
# final_list.append([batch, i])
# else:
# final_list.append([batch, next(tp)])
# return final_list
class BertEncoder(nn.Module):
def __init__(self, config):
super(BertEncoder, self).__init__()
layer = BertLayer(config)
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True):
all_encoder_layers = []
for layer_module in self.layer:
hidden_states = layer_module(hidden_states, attention_mask)
if output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
if not output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
return all_encoder_layers
class BertEncoderUt(nn.Module):
def __init__(self, config):
super(BertEncoderUt, self).__init__()
if config.use_temporal_embeddings:
self.layer = BertLayerUt(config)
self.use_temporal_embeddings = True
else:
self.layer = BertLayer(config)
self.use_temporal_embeddings = False
self.hidden_layer_number = config.num_hidden_layers
#self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True):
all_encoder_layers = []
for ut_time in range(self.hidden_layer_number):
if self.use_temporal_embeddings:
hidden_states = self.layer(hidden_states, attention_mask, ut_time)
else:
hidden_states = self.layer(hidden_states, attention_mask)
if output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
if not output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
return all_encoder_layers
class BertEncoderDNC(nn.Module):
def __init__(self, config):
super(BertEncoderDNC, self).__init__()
if config.read_token_type == "concat":
self.layer = BertLayerDNC(config)
elif config.read_token_type == "add":
self.layer = BertLayerAddDNC(config, scale_original_tokens=False)
elif config.read_token_type == "add_scale":
self.layer = BertLayerAddDNC(config, scale_original_tokens=True)
#print(config.read_token_type)
self.use_temporal_embeddings = True
assert config.use_temporal_embeddings == True
self.hidden_layer_number = config.num_hidden_layers
#self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
def forward(self, hidden_states, attention_mask, input_number, total_tokens, mask_positions, reset_memory, erase_memory, output_all_encoded_layers=True):
all_encoder_layers = []
for ut_time in range(self.hidden_layer_number):
hidden_states, attention_mask = self.layer(hidden_states, attention_mask, ut_time, input_number = input_number, total_tokens=total_tokens,
mask_positions=mask_positions, reset_memory=reset_memory, erase_memory= erase_memory)
reset_memory = False
if output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
if not output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
return all_encoder_layers
class BertEncoderDNCnoUT(nn.Module):
def __init__(self, config):
super(BertEncoderDNCnoUT, self).__init__()
if config.read_token_type == "concat":
self.layer = BertLayerDNC(config)
elif config.read_token_type == "add":
self.layer = BertLayerAddDNC(config, scale_original_tokens=False)
print("use add")
elif config.read_token_type == "add_scale":
self.layer = BertLayerAddDNC(config, scale_original_tokens=True)
print("use add_scale")
#print(config.read_token_type)
self.use_temporal_embeddings = True
assert config.use_temporal_embeddings == True
self.hidden_layer_number = config.num_hidden_layers
self.layer = nn.ModuleList([copy.deepcopy(self.layer) for _ in range(config.num_hidden_layers)])
try:
import faiss
self.res = faiss.StandardGpuResources()
self.res.setTempMemoryFraction(0.02)
self.res.initializeForDevice(0)
print("using the same ressources for each batch")
except:
print("using different ressources each batch, as faiss couldnt be loaded")
self.res = None
for l in self.layer:
l.memory.res = self.res
#self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
def forward(self, hidden_states, attention_mask, input_number, total_tokens, mask_positions, reset_memory, erase_memory, output_all_encoded_layers=True):
all_encoder_layers = []
for ut_time, layer in enumerate(self.layer):
hidden_states, attention_mask = layer(hidden_states, attention_mask, ut_time, input_number = input_number, total_tokens=total_tokens,
mask_positions=mask_positions, reset_memory=reset_memory, erase_memory= erase_memory)
if output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
if not output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
return all_encoder_layers
class BertPooler(nn.Module):
def __init__(self, config):
super(BertPooler, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super(BertPredictionHeadTransform, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class BertLMPredictionHead(nn.Module):
def __init__(self, config, bert_model_embedding_weights):
super(BertLMPredictionHead, self).__init__()
#n CHANGED!!
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(bert_model_embedding_weights.size(1),
bert_model_embedding_weights.size(0),
bias=False)
self.decoder.weight = bert_model_embedding_weights
self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0)))
def forward(self, hidden_states):
#n CHANGED!!
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states) + self.bias
return hidden_states
class BertOnlyMLMHead(nn.Module):
def __init__(self, config, bert_model_embedding_weights):
super(BertOnlyMLMHead, self).__init__()
self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
def forward(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class BertOnlyNSPHead(nn.Module):
def __init__(self, config):
super(BertOnlyNSPHead, self).__init__()
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, pooled_output):
seq_relationship_score = self.seq_relationship(pooled_output)
return seq_relationship_score
class BertPreTrainingHeads(nn.Module):
def __init__(self, config, bert_model_embedding_weights):
super(BertPreTrainingHeads, self).__init__()
self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, sequence_output, pooled_output):
prediction_scores = self.predictions(sequence_output)
seq_relationship_score = self.seq_relationship(pooled_output)
return prediction_scores, seq_relationship_score
class BertPreTrainedModel(nn.Module):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
def __init__(self, config, *inputs, **kwargs):
super(BertPreTrainedModel, self).__init__()