-
Notifications
You must be signed in to change notification settings - Fork 5
/
test.py
308 lines (266 loc) · 13.6 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import os.path as osp
from argparse import ArgumentParser
import sys
from tqdm import tqdm
import torch
import random
from utils.logger import Logger, SummaryBox, Timer
from utils.utils import *
from utils.random_seeder import set_random_seed
from training_procedure import Trainer
from DataHelper.datasetHelper import DatasetHelper
from torch.utils.data import DataLoader
import pathlib
import utils.plot_tools as plot_tools
import warnings
import datetime
from sklearn.metrics import recall_score, roc_auc_score, roc_auc_score, precision_score, confusion_matrix
from torch.nn.functional import softmax
from collections import namedtuple
from imblearn.metrics import geometric_mean_score
warnings.filterwarnings('ignore')
METRIC_NAME = ['auc_gnn',
'ap_gnn',
'gmean_gnn',
'recall_macro',
'f1_macro',
'best_roc_thres',
'best_pr_thres',
'f1_binary_1',
'f1_binary_0',
'recall_1',
'precision_1']
def calc_gmean(conf):
tn, fp, fn, tp = conf.ravel()
return (tp * tn / ((tp + fn) * (tn + fp))) ** 0.5
def calc_acc(y_true, y_pred):
"""
Compute the accuracy of prediction given the labels.
"""
# return (y_pred == y_true).sum() * 1.0 / len(y_pred)
return metrics.accuracy_score(y_true, y_pred)
def calc_f1(y_true, y_pred):
f1_binary_1_gnn = metrics.f1_score(y_true, y_pred, pos_label=1, average='binary')
f1_binary_0_gnn = metrics.f1_score(y_true, y_pred, pos_label=0, average='binary')
f1_micro_gnn = metrics.f1_score(y_true, y_pred, average='micro')
f1_macro_gnn = metrics.f1_score(y_true, y_pred, average='macro')
return f1_binary_1_gnn, f1_binary_0_gnn, f1_micro_gnn, f1_macro_gnn
def calc_roc_and_thres(y_true, y_prob):
fpr, tpr, thresholds = metrics.roc_curve(y_true, y_prob)
auc_list = []
auc_gnn = metrics.auc(fpr, tpr)
J = tpr - fpr
ks_val = max(abs(J))
idx = J.argmax(axis=0)
best_thres = thresholds[idx]
return auc_gnn, best_thres
def calc_ap_and_thres(y_true, y_prob):
# \\text{AP} = \\sum_n (R_n - R_{n-1}) P_n, 和AUPRC略有不同
ap_gnn = metrics.average_precision_score(y_true, y_prob)
precision, recall, thresholds = metrics.precision_recall_curve(y_true, y_prob)
F1 = 2 * precision * recall / (precision + recall)
idx = F1.argmax(axis=0)
best_thres = thresholds[idx]
return ap_gnn, best_thres
def prob2pred(logits_fraud, thres=0.5):
"""
Convert probability to predicted results according to given threshold
:param y_prob: numpy array of probability in [0, 1]
:param thres: binary classification threshold, default 0.5
:returns: the predicted result with the same shape as y_prob
"""
y_pred = np.zeros_like(logits_fraud, dtype=np.int32)
y_pred[logits_fraud >= thres] = 1
y_pred[logits_fraud < thres] = 0
return y_pred
def eval_model(y_true, y_prob, y_pred):
"""
:param y_true: torch.Tensor tst_labels
:param y_prob: torch.Tensor tst_fraud_prob
:param y_pred: torch.Tensor
:return: namedtuple
"""
acc = calc_acc(y_true, y_pred)
f1_binary_1, f1_binary_0, f1_micro, f1_macro = calc_f1(y_true, y_pred)
auc_gnn, best_roc_thres = calc_roc_and_thres(y_true, y_prob)
# auc_gnn = metrics.roc_auc_score(y_true, y_prob)
ap_gnn, best_pr_thres = calc_ap_and_thres(y_true, y_prob)
precision_1 = metrics.precision_score(y_true, y_pred, pos_label=1, average="binary")
recall_1 = metrics.recall_score(y_true, y_pred, pos_label=1, average='binary')
recall_macro = metrics.recall_score(y_true, y_pred, average='macro')
# conf_gnn = metrics.confusion_matrix(y_true, y_pred)
conf_gnn = metrics.confusion_matrix(y_true, y_pred)
gmean_gnn = calc_gmean(conf_gnn)
# tn, fp, fn, tp = conf_gnn.ravel()
DataType = namedtuple('Metrics', ['f1_binary_1', 'f1_binary_0', 'f1_macro', 'auc_gnn',
'gmean_gnn', 'recall_1', 'precision_1', 'ap_gnn',
'best_roc_thres', 'best_pr_thres', 'recall_macro'])
# 1:fraud->positive, 0:benign->negtive
results = DataType(f1_binary_1=f1_binary_1,
f1_binary_0=f1_binary_0,
f1_macro=f1_macro,
auc_gnn=auc_gnn,
gmean_gnn=gmean_gnn,
ap_gnn=ap_gnn,
recall_1=recall_1,
precision_1=precision_1,
recall_macro=recall_macro,
best_pr_thres=best_pr_thres,
best_roc_thres=best_roc_thres,
)
return results
def convert_probs(labels, logits, threshold_moving=True, thres=0.5):
logits = torch.nn.Sigmoid()(logits)
logits = logits.detach().cpu().numpy()
logits_fraud = logits[:, 1]
if threshold_moving:
preds = prob2pred(logits_fraud, thres=thres)
else:
preds = logits.argmax(axis=1)
return labels, logits_fraud, preds
@torch.no_grad()
def evaluate(datasetHelper,
val_test_loader,
model,
threshold_moving=True,
thres = 0.5,
dataset = None):
model.eval()
logits_list = []
label_list = []
num_blocks = 0
gmean = 0
if config['model_name'] == 'GAGA':
for (batch_seq, batch_labels) in val_test_loader:
batch_seq = batch_seq.cuda()
batch_logits = model(batch_seq)
logits_list.append(batch_logits.cpu())
label_list .append(batch_labels.cpu())
elif config['model_name'] in ['GraphSAGE', 'LA-SAGE', 'LA-SAGE2', 'LA-SAGE-LI', 'LA-SAGE-S']:
relations = datasetHelper.relations
for step, (input_nodes, output_nodes, blocks) in enumerate(val_test_loader):
blocks = [b.to(torch.cuda.current_device()) for b in blocks]
val_test_feats = blocks[0].srcdata['feature']
val_test_label = blocks[-1].dstdata['label']
batch_logits = model(blocks, relations, val_test_feats)
logits_list.append(batch_logits.cpu())
label_list .append(val_test_label.cpu())
# shape=(len(eval_loader), 2)
logits = torch.cat(logits_list, dim=0) # predicted logits torch.Size([4595, 2])
# for label alighment when using train_loader
eval_labels = torch.cat(label_list, dim=0) # ground truth labels
eval_labels = eval_labels.detach().cpu().numpy()
eval_labels, fraud_probs, preds = convert_probs(eval_labels, logits, threshold_moving=threshold_moving, thres=thres)
geometric_mean_scores = geometric_mean_score(eval_labels, preds, average='micro')
return eval_labels, fraud_probs, preds, geometric_mean_scores
def run_best_model(args, config, loaders, logger: Logger):
T = Trainer(config=config, args= args, logger= logger)
model, _, _,_ = T.init(datasetHelper)
best_model_path = config['best_model_path']
best_model = load_checkpoint(model, best_model_path)
val_loader = loaders[1]
test_loader = loaders[2]
labels, fraud_probs, preds, geometric_mean_scores = evaluate(datasetHelper,
val_loader,
best_model,
threshold_moving=config['threshold_moving'],
thres = config['thres'])
best_dev_results = eval_model(labels, fraud_probs, preds)
tst_labels, tst_fraud_prob, tst_preds,tst_geometric_mean_scores = evaluate(datasetHelper,
test_loader,
best_model,
threshold_moving=config['threshold_moving'],
thres = best_dev_results.best_pr_thres)
final_test_results = eval_model(tst_labels, tst_fraud_prob, tst_preds)
logger.append = ""
val_string = "Best Validation Results"
tst_string = "Final Test Results"
logger.log("#" * (len(val_string)+2))
logger.log("#Best Validation Results#")
logger.log("#" * (len(val_string)+2))
for metric in METRIC_NAME:
# metric_list = np.around([getattr(result, metric) for result in final_test_results], decimals=5)
metric_value = getattr(best_dev_results, metric)
# logger.log("%s : %s" % (metric , str([round(x,4) for x in metric_list])))
logger.log("%s : = %.4f" % (metric , metric_value))
logger.log("#" * (len(tst_string)+2))
logger.log("#Final Test Results#")
logger.log("#" * (len(tst_string)+2))
for metric in METRIC_NAME:
# metric_list = np.around([getattr(result, metric) for result in final_test_results], decimals=5)
metric_value = getattr(final_test_results, metric)
# logger.log("%s : %s" % (metric , str([round(x,4) for x in metric_list])))
logger.log("%s : = %.4f" % (metric , metric_value))
# AUC, GMEAN = evaluate(datasetHelper,
# test_loader,
# best_model,
# threshold_moving=config['threshold_moving'],
# thres = best_dev_results.best_pr_thres)
# print(AUC, GMEAN)
logger.log("gmean_micro : = %.4f" % (tst_geometric_mean_scores))
if __name__ == "__main__":
parser = ArgumentParser()
# test gaga model: python main.py --model GAGA --dataset yelp --gpu_id 2 --run_best
# test GNN4FD: python main.py --model GNN4FD --dataset yelp --gpu_id 2 --run_best
parser.add_argument('--dataset', type = str, default = 'yelp')
parser.add_argument('--num_workers', default = 8, type = int, choices = [0, 8])
parser.add_argument('--seed', default = 1234, type = int, choices = [0, 1, 1234])
parser.add_argument('--data_dir', type = str, default = "datasets/")
parser.add_argument('--hyper_file', type = str, default = 'config/')
parser.add_argument('--log_dir', type = str, default = 'logs/')
parser.add_argument('--best_model_path', type = str, default = 'checkpoints/')
parser.add_argument('--train_size', type = float, default = 0.4)
parser.add_argument('--val_size', type = float, default = 0.2)
parser.add_argument('--no_dev', action = "store_true" , default = False)
parser.add_argument('--gpu_id', type = int, default = 0)
parser.add_argument('--model', type = str, default ='LA-SAGE-S') # GCN, GAT or other
args = parser.parse_args()
torch.cuda.set_device(args.gpu_id)
if args.model == 'LA-SAGE-S' and args.train_size == 0.4 and args.val_size == 0.2 and args.dataset == 'amazon':
start_wall_time = '2023-07-03_23-52-09'
if args.model == 'LA-SAGE-S' and args.train_size == 0.4 and args.val_size == 0.2 and args.dataset == 'yelp':
start_wall_time = '2023-07-03_20-27-53'
if args.model == 'LA-SAGE-S' and args.train_size == 0.4 and args.val_size == 0.2 and args.dataset == 'tfinance':
start_wall_time = '2023-07-04_13-07-46'
logger = Logger(mode = [print])
logger.add_line = lambda : logger.log("-" * 50)
logger.log(" ".join(sys.argv))
logger.add_line()
logger.log()
if args.train_size == 0.01 and args.val_size == 0.1:
config_path = osp.join(args.best_model_path, '_0.01', args.model ,args.dataset, start_wall_time, args.dataset+ '.yml')
elif args.train_size == 0.4 and args.val_size == 0.1:
config_path = osp.join(args.best_model_path, args.model ,args.dataset, start_wall_time, args.dataset+ '.yml')
elif args.train_size == 0.0001 and args.val_size == 0.1:
config_path = osp.join(args.best_model_path, '_0.0001', args.model ,args.dataset, start_wall_time, args.dataset+ '.yml')
elif args.train_size == 0.4 and args.val_size == 0.2:
config_path = osp.join(args.best_model_path, 'val_0.2', args.model ,args.dataset, start_wall_time, args.dataset+ '.yml')
config = get_config(config_path)
model_name = args.model
# config = config[model_name]
config['model_name'] = model_name
config = args2config(args, config)
dev_ress = []
tes_ress = []
tra_ress = []
if config.get('seed',-1) > 0:
set_random_seed(config['seed'])
logger.log ("Seed set. %d" % (config['seed']))
seeds = [random.randint(0,233333333) for _ in range(config['multirun'])]
datasetHelper: DatasetHelper = load_data(args, config)
datasetHelper.load() # config dataset
print_config(config)
if args.train_size != 0.4:
config['best_model_path'] = args.best_model_path + '_{}'.format(args.train_size)
if args.val_size != 0.1:
config['best_model_path'] = args.best_model_path + 'val_{}'.format(args.val_size)
checkpoint_path_local = osp.join(config['best_model_path'], config['model_name'], config['dataset'], start_wall_time)
pathlib.Path(checkpoint_path_local).mkdir(parents=True, exist_ok=True)
if config['model_name'] in ['GraphSAGE', 'LA-SAGE']:
best_val_model = f"best_val_model_{args.seed}.pth"
else:
best_val_model = f"best_val_model_{args.seed}.pth"
best_model_path = osp.join(checkpoint_path_local, best_val_model)
config['best_model_path'] = best_model_path
data_loaders = (datasetHelper.train_loader, datasetHelper.val_loader, datasetHelper.test_loader)
run_best_model(args, config, data_loaders, logger)