forked from FairMedFM/FairMedFM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
parse_args.py
130 lines (116 loc) · 4.36 KB
/
parse_args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import argparse
import os
from ast import parse
def collect_args():
parser = argparse.ArgumentParser()
# experiments
parser.add_argument("--task", default="cls", choices=["cls", "seg"])
parser.add_argument(
"--usage",
type=str,
default='clip-zs',
choices=["lp", "clip-zs", "clip-adapt", "seg2d-rand",
"seg2d-rands", "seg2d-center", "seg2d-bbox", "seg2d"],
)
parser.add_argument("--method", default="erm",
choices=["erm", "resampling", "group-dro", "laftr"])
parser.add_argument(
"--dataset",
default="CXP",
choices=[
"CXP",
"MIMIC_CXR",
"HAM10000",
"PAPILA",
"ADNI",
"COVID_CT_MD",
"FairVLMed10k",
"BREST",
"GF3300",
"HAM10000-Seg",
"FairSeg",
"montgomery",
"TUSC"
],
)
parser.add_argument("--sensitive_name", default="Sex",
choices=["Sex", "Age", "Race", "Language"])
parser.add_argument("--is_3d", action="store_true")
parser.add_argument("--augment", action="store_true")
parser.add_argument("--experiment_name", type=str, default="test")
parser.add_argument("--wandb_name", type=str, default="baseline")
parser.add_argument("--if_wandb", type=bool, default=False)
parser.add_argument("--resume_path", type=str, default="",
help="explicitly indentify checkpoint path to resume.")
# training
parser.add_argument("--random_seed", type=int, default=0)
parser.add_argument("--batch_size", type=int, default=1024)
parser.add_argument("--optimizer", default="adamw",
choices=["sgd", "adam", "adamw"])
parser.add_argument("--blr", type=float, default=1e-4,
help="learning rate")
parser.add_argument("--min_lr", type=float, default=1e-5)
parser.add_argument("--fixed_lr", action="store_true")
parser.add_argument("--weight_decay", type=float,
default=1e-4, help="weight decay for optimizer")
parser.add_argument("--lr_decay_rate", type=float,
default=0.1, help="decay rate of the learning rate")
parser.add_argument("--lr_decay_period", type=float,
default=10, help="decay period of the learning rate")
parser.add_argument("--total_epochs", type=int,
default=100, help="total training epochs")
parser.add_argument("--early_stopping", type=int,
default=1, help="early stopping epochs")
parser.add_argument("--test_mode", type=bool,
default=False, help="if using test mode")
parser.add_argument("--warmup_epochs", type=int, default=5)
parser.add_argument("--no_cuda", dest="cuda", action="store_false")
parser.add_argument("--no_cls_balance", dest="cls_balance", action="store_false")
# network
parser.add_argument(
"--model",
default="BiomedCLIP",
choices=[
"BiomedCLIP",
"PubMedCLIP",
"MedCLIP",
"CLIP",
"BLIP",
"BLIP2",
"DINOv2",
"MedLVM",
"C2L",
"MedMAE",
"MoCoCXR",
"SAM",
"MedSAM",
"SAMMed2D",
"FT-SAM",
"TinySAM",
"MobileSAM"
],
)
parser.add_argument("--context_length", default=77)
# testing
parser.add_argument("--hash_id", type=str, default="")
# strategy for validation
parser.add_argument(
"--val_strategy",
type=str,
default="loss",
choices=["loss", "worst_auc"],
help="strategy for selecting val model",
)
parser.set_defaults(cuda=True)
# logging
parser.add_argument("--log_freq", type=int, default=50,
help="logging frequency (step)")
parser.add_argument("--exp_path", type=str, default="./output")
# segment_specific
parser.add_argument("--pos_class", type=int, default=None)
parser.add_argument("--img_size", type=int, default=256)
parser.add_argument("--sam_ckpt_path", type=str)
parser.add_argument("--prompt", type=str,
choices=["bbox", "rand", "rands", "center"])
args = parser.parse_args()
return args