This example is used to demonstrate how to quantize a TensorFlow checkpoint and run with a dummy dataloader.
pip install -r requirements.txt
Note: Validated TensorFlow Version.
git clone https://github.com/openvinotoolkit/open_model_zoo.git
cd open_model_zoo
git checkout 2021.4
cd ..
python ./open_model_zoo/tools/downloader/downloader.py --name rfcn-resnet101-coco-tf --output_dir model
python test.py
We will create a dummy dataloader and only need to add the following lines for quantization to create an int8 model.
dataset = Datasets('tensorflow')['dummy_v2']( \
input_shape=(100, 100, 3), label_shape=(1, ))
config = PostTrainingQuantConfig(
inputs=['image_tensor'],
outputs=['detection_boxes', 'detection_scores', 'detection_classes', 'num_detections'],
calibration_sampling_size=[20]
)
quantized_model = fit(
model='./model/public/rfcn-resnet101-coco-tf/rfcn_resnet101_coco_2018_01_28/',
conf=config,
calib_dataloader=DataLoader(framework='tensorflow', dataset=dataset, batch_size=1))