-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpredict_smd_solv.py
119 lines (95 loc) · 3.6 KB
/
predict_smd_solv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import os
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
from openbabel import pybel
import numpy as np
import pandas as pd
from src.utils import filter_mol
import torch
from src.descriptor import mol2vec
from src.models import load_model
from src.optimize_mol import optimize
from src.gen_confs import gen_confs_set
from rdkit import Chem
from rdkit.Chem.Draw import rdMolDraw2D
from multiprocessing import Pool
import argparse
import warnings
warnings.filterwarnings("ignore")
def predict_single(pmol, model, fmax):
device = "cpu"
obmol = pmol.OBMol
if fmax:
obmol, dE = optimize(obmol, fmax)
else:
dE = 0.0
data = mol2vec(obmol)
with torch.no_grad():
data = data.to(device)
solv = model(data).cpu().numpy()[0][0]
return solv, dE
def predict_multicore_wrapper(param):
block, fmax, charge = param
nmodel, imodel = load_model()
pmol = pybel.readstring("mol", block)
if charge > 0.0:
solv, dE = predict_single(pmol, imodel, fmax)
else:
solv, dE = predict_single(pmol, nmodel, fmax)
dE = dE / 27.2114 * 627.5094
return [solv, dE, solv+dE]
def predict_by_smi(smi, fmax, charge, cores, num_confs):
blocks = gen_confs_set(smi, num_confs)
params = []
for block in blocks:
params.append([block, fmax, charge])
pool = Pool(cores)
score = pool.map(predict_multicore_wrapper, params)
pool.close()
df_score = pd.DataFrame(score)
dfsg_sorted = df_score.sort_values(2)
lower_solv = dfsg_sorted.iloc[0, 0]
lower_dE = dfsg_sorted.iloc[0, 1]
return lower_solv, lower_dE
def predict(smi, fmax, cores, num_confs):
pmol = pybel.readstring("smi", smi)
if (not filter_mol( pmol )):
print("#### Warning filter molecule")
return 0.0
charge = abs(pmol.charge)
solv, dE = predict_by_smi(smi, fmax, charge, cores, num_confs)
return solv, dE
def get_solv_data(smi, fmax, cores, num_confs):
solv, dE = predict(smi, fmax, cores, num_confs)
data = {}
data['smi'] = smi
data['solv'] = solv
data['dE'] = dE
return data
def run():
parser = argparse.ArgumentParser(
description='calculate solvation energy for small molecules')
parser.add_argument('--smi', type=str, default='CCNCc1cnccc1', help='the molecular smiles')
parser.add_argument('--fmax', type=float, default=0.01, help='The convergence criterion is that the force on all individual atoms should be less than fmax')
parser.add_argument('--cores', type=int, default=None, help='the number of cpu for calculatuon')
parser.add_argument('--num_confs', type=int, default=6, help='the number of conformation for solvation energy prediction')
parser.add_argument('--output', type=str, default="molsolv_output.dat", help='the output file name')
args = parser.parse_args()
smi = args.smi
fmax = args.fmax
cores = args.cores
num_confs = args.num_confs
output = args.output
data = get_solv_data(smi, fmax, cores, num_confs)
with open(output, "a") as f:
f.write(data['smi'] + "\t" + str(data["solv"]) + "\t" + str(data["dE"]) + "\n")
print("\n\n")
print("-----------------------------------------------------------------")
print("smiles\tsolv (kcal/mol)\tdE (kcal/mol)\n{}\t{}\t{}".format(data['smi'], round(data["solv"], 2), round(data["dE"], 2)))
print("-----------------------------------------------------------------")
return
if __name__=='__main__':
run()