forked from krishnaik06/Studentmlprojectregression
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapplication.py
65 lines (54 loc) · 2.03 KB
/
application.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from flask import Flask, request, render_template,jsonify
from flask_cors import CORS,cross_origin
from src.pipeline.predict_pipeline import CustomData, PredictPipeline
application = Flask(__name__)
app = application
@app.route('/')
@cross_origin()
def home_page():
return render_template('index.html')
@app.route('/predict',methods=['GET','POST'])
@cross_origin()
def predict_datapoint():
if request.method == 'GET':
return render_template('index.html')
else:
data = CustomData(
carat = float(request.form.get('carat')),
depth = float(request.form.get('depth')),
table = float(request.form.get('table')),
x = float(request.form.get('x')),
y = float(request.form.get('y')),
z = float(request.form.get('z')),
cut = request.form.get('cut'),
color= request.form.get('color'),
clarity = request.form.get('clarity')
)
pred_df = data.get_data_as_dataframe()
print(pred_df)
predict_pipeline = PredictPipeline()
pred = predict_pipeline.predict(pred_df)
results = round(pred[0],2)
return render_template('index.html',results=results,pred_df = pred_df)
@app.route('/predictAPI',methods=['POST'])
@cross_origin()
def predict_api():
if request.method=='POST':
data = CustomData(
carat = float(request.json['carat']),
depth = float(request.json['depth']),
table = float(request.json['table']),
x = float(request.json['x']),
y = float(request.json['y']),
z = float(request.json['z']),
cut = request.json['cut'],
color = request.json['color'],
clarity = request.json['clarity']
)
pred_df = data.get_data_as_dataframe()
predict_pipeline = PredictPipeline()
pred = predict_pipeline.predict(pred_df)
dct = {'price':round(pred[0],2)}
return jsonify(dct)
if __name__ == '__main__':
app.run(host='0.0.0.0', port=8000)