Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update Project_Outline.ipynb #50

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
101 changes: 100 additions & 1 deletion Project_Outline.ipynb
Original file line number Diff line number Diff line change
@@ -1 +1,100 @@
{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"name":"Project Outline.ipynb","provenance":[],"authorship_tag":"ABX9TyPZl4d0nA5Qmq8X1mDqSb1O"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"markdown","source":["# **Title of Project**"],"metadata":{"id":"dqZ-nhxiganh"}},{"cell_type":"markdown","source":["-------------"],"metadata":{"id":"gScHkw6jjrLo"}},{"cell_type":"markdown","source":["## **Objective**"],"metadata":{"id":"Xns_rCdhh-vZ"}},{"cell_type":"markdown","source":[""],"metadata":{"id":"9sPvnFM1iI9l"}},{"cell_type":"markdown","source":["## **Data Source**"],"metadata":{"id":"-Vbnt9CciKJP"}},{"cell_type":"markdown","source":[""],"metadata":{"id":"sGcv5WqQiNyl"}},{"cell_type":"markdown","source":["## **Import Library**"],"metadata":{"id":"r7GrZzX0iTlV"}},{"cell_type":"code","source":[""],"metadata":{"id":"UkK6NH9DiW-X"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Import Data**"],"metadata":{"id":"9lHPQj1XiOUc"}},{"cell_type":"code","source":[""],"metadata":{"id":"zcU1fdnGho6M"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Describe Data**"],"metadata":{"id":"7PUnimBoiX-x"}},{"cell_type":"code","source":[""],"metadata":{"id":"kG15arusiZ8Z"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Data Visualization**"],"metadata":{"id":"oBGX4Ekniriz"}},{"cell_type":"code","source":[""],"metadata":{"id":"lW-OIRK0iuzO"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Data Preprocessing**"],"metadata":{"id":"UqfyPOCYiiww"}},{"cell_type":"code","source":[""],"metadata":{"id":"3cyr3fbGin0A"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Define Target Variable (y) and Feature Variables (X)**"],"metadata":{"id":"2jXJpdAuiwYW"}},{"cell_type":"code","source":[""],"metadata":{"id":"QBCakTuli57t"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Train Test Split**"],"metadata":{"id":"90_0q_Pbi658"}},{"cell_type":"code","source":[""],"metadata":{"id":"u60YYaOFi-Dw"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Modeling**"],"metadata":{"id":"cIhyseNria7W"}},{"cell_type":"code","source":[""],"metadata":{"id":"Toq58wpkjCw7"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Model Evaluation**"],"metadata":{"id":"vhAwWfG0jFun"}},{"cell_type":"code","source":[""],"metadata":{"id":"lND3jJj_jhx4"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Prediction**"],"metadata":{"id":"8AzwG7oLjiQI"}},{"cell_type":"code","source":[""],"metadata":{"id":"JLebGzDJjknA"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Explaination**"],"metadata":{"id":"SBo38CJZjlEX"}},{"cell_type":"markdown","source":[""],"metadata":{"id":"Ybi8FR9Kjv00"}}]}

Here's a mini project outline for Women's Clothing Review Prediction using Multinomial Naive Bayes:

*Project Title:* "StyleSentiment"

*Objective:*

Develop a Multinomial Naive Bayes (MNB) model to predict the sentiment (Positive/Negative/Neutral) of women's clothing reviews based on text analysis.

*Dataset:*

- Collect 5,000+ reviews from online fashion retailers (e.g., Amazon, Zappos, ASOS)
- Filter reviews for women's clothing only
- Preprocess data:
1. Tokenization
2. Stopword removal
3. Stemming/Lemmatization
4. Remove special characters and punctuation
5. Label encoding (Positive: 1, Negative: 0, Neutral: 2)

*Features:*

1. Text data (review content)
2. Rating (1-5 stars)

*Target Variable:*

Sentiment (Positive/Negative/Neutral)

*Multinomial Naive Bayes (MNB) Model:*

1. Import necessary libraries: `numpy`, `pandas`, `scikit-learn`
2. Split data into training (80%) and testing sets (20%)
3. Create MNB model: `MultinomialNB()`
4. Train model on training data
5. Evaluate model on testing data

*Evaluation Metrics:*

1. Accuracy
2. Precision
3. Recall
4. F1-score
5. ROC-AUC

*Code:*
```
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

# Load data
df = pd.read_csv('reviews.csv')

# Preprocess data
vectorizer = CountVectorizer(stop_words='english')
X = vectorizer.fit_transform(df['review'])
y = df['sentiment']

# Split data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Train MNB model
mnb = MultinomialNB()
mnb.fit(X_train, y_train)

# Evaluate model
y_pred = mnb.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Classification Report:")
print(classification_report(y_test, y_pred))
print("Confusion Matrix:")
print(confusion_matrix(y_test, y_pred))
```

*Expected Results:*

- Accuracy: 85-90%
- Precision: 80-85%
- Recall: 85-90%
- F1-score: 85-90%
- ROC-AUC: 0.9-0.95

*Timeline:*

- Data collection and preprocessing: 2 days
- Model development and evaluation: 3 days
- Testing and refinement: 1 day

Total estimated time: 6 days

Would you like to:

1. Discuss dataset collection strategies
2. Explore hyperparameter tuning for MNB
3. Compare MNB with other machine learning models
4. Implement additional features (e.g., product category, rating)
5. Something else (please specify)