diff --git a/Project_Outline.ipynb b/Project_Outline.ipynb index e47f144..bfb56e8 100644 --- a/Project_Outline.ipynb +++ b/Project_Outline.ipynb @@ -1 +1,97 @@ -{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"name":"Project Outline.ipynb","provenance":[],"authorship_tag":"ABX9TyPZl4d0nA5Qmq8X1mDqSb1O"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"markdown","source":["# **Title of Project**"],"metadata":{"id":"dqZ-nhxiganh"}},{"cell_type":"markdown","source":["-------------"],"metadata":{"id":"gScHkw6jjrLo"}},{"cell_type":"markdown","source":["## **Objective**"],"metadata":{"id":"Xns_rCdhh-vZ"}},{"cell_type":"markdown","source":[""],"metadata":{"id":"9sPvnFM1iI9l"}},{"cell_type":"markdown","source":["## **Data Source**"],"metadata":{"id":"-Vbnt9CciKJP"}},{"cell_type":"markdown","source":[""],"metadata":{"id":"sGcv5WqQiNyl"}},{"cell_type":"markdown","source":["## **Import Library**"],"metadata":{"id":"r7GrZzX0iTlV"}},{"cell_type":"code","source":[""],"metadata":{"id":"UkK6NH9DiW-X"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Import Data**"],"metadata":{"id":"9lHPQj1XiOUc"}},{"cell_type":"code","source":[""],"metadata":{"id":"zcU1fdnGho6M"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Describe Data**"],"metadata":{"id":"7PUnimBoiX-x"}},{"cell_type":"code","source":[""],"metadata":{"id":"kG15arusiZ8Z"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Data Visualization**"],"metadata":{"id":"oBGX4Ekniriz"}},{"cell_type":"code","source":[""],"metadata":{"id":"lW-OIRK0iuzO"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Data Preprocessing**"],"metadata":{"id":"UqfyPOCYiiww"}},{"cell_type":"code","source":[""],"metadata":{"id":"3cyr3fbGin0A"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Define Target Variable (y) and Feature Variables (X)**"],"metadata":{"id":"2jXJpdAuiwYW"}},{"cell_type":"code","source":[""],"metadata":{"id":"QBCakTuli57t"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Train Test Split**"],"metadata":{"id":"90_0q_Pbi658"}},{"cell_type":"code","source":[""],"metadata":{"id":"u60YYaOFi-Dw"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Modeling**"],"metadata":{"id":"cIhyseNria7W"}},{"cell_type":"code","source":[""],"metadata":{"id":"Toq58wpkjCw7"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Model Evaluation**"],"metadata":{"id":"vhAwWfG0jFun"}},{"cell_type":"code","source":[""],"metadata":{"id":"lND3jJj_jhx4"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Prediction**"],"metadata":{"id":"8AzwG7oLjiQI"}},{"cell_type":"code","source":[""],"metadata":{"id":"JLebGzDJjknA"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Explaination**"],"metadata":{"id":"SBo38CJZjlEX"}},{"cell_type":"markdown","source":[""],"metadata":{"id":"Ybi8FR9Kjv00"}}]} \ No newline at end of file +*Project Title:* "StyleSentiment" + +*Objective:* + +Develop a Multinomial Naive Bayes (MNB) model to predict the sentiment (Positive/Negative/Neutral) of women's clothing reviews based on text analysis. + +*Dataset:* + +- Collect 5,000+ reviews from online fashion retailers (e.g., Amazon, Zappos, ASOS) +- Filter reviews for women's clothing only +- Preprocess data: + 1. Tokenization + 2. Stopword removal + 3. Stemming/Lemmatization + 4. Remove special characters and punctuation + 5. Label encoding (Positive: 1, Negative: 0, Neutral: 2) + +*Features:* + +1. Text data (review content) +2. Rating (1-5 stars) + +*Target Variable:* + +Sentiment (Positive/Negative/Neutral) + +*Multinomial Naive Bayes (MNB) Model:* + +1. Import necessary libraries: `numpy`, `pandas`, `scikit-learn` +2. Split data into training (80%) and testing sets (20%) +3. Create MNB model: `MultinomialNB()` +4. Train model on training data +5. Evaluate model on testing data + +*Evaluation Metrics:* + +1. Accuracy +2. Precision +3. Recall +4. F1-score +5. ROC-AUC + +*Code:* +``` +import pandas as pd +from sklearn.feature_extraction.text import CountVectorizer +from sklearn.model_selection import train_test_split +from sklearn.naive_bayes import MultinomialNB +from sklearn.metrics import accuracy_score, classification_report, confusion_matrix + +# Load data +df = pd.read_csv('reviews.csv') + +# Preprocess data +vectorizer = CountVectorizer(stop_words='english') +X = vectorizer.fit_transform(df['review']) +y = df['sentiment'] + +# Split data +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) + +# Train MNB model +mnb = MultinomialNB() +mnb.fit(X_train, y_train) + +# Evaluate model +y_pred = mnb.predict(X_test) +print("Accuracy:", accuracy_score(y_test, y_pred)) +print("Classification Report:") +print(classification_report(y_test, y_pred)) +print("Confusion Matrix:") +print(confusion_matrix(y_test, y_pred)) +``` + +*Expected Results:* + +- Accuracy: 85-90% +- Precision: 80-85% +- Recall: 85-90% +- F1-score: 85-90% +- ROC-AUC: 0.9-0.95 + +*Timeline:* + +- Data collection and preprocessing: 2 days +- Model development and evaluation: 3 days +- Testing and refinement: 1 day + +Total estimated time: 6 days + +Would you like to: + +1. Discuss dataset collection strategies +2. Explore hyperparameter tuning for MNB +3. Compare MNB with other machine learning models +4. Implement additional features (e.g., product category, rating) +5. Something else (please specify)